Answer:
B. Ionic Compound
Explanation:
An ionic compound is that compound which contains a positively charged ion called CATION and a negatively charged ion called ANION. The cation loses or transfers electrons to the anion, hence, making the former (cation) positive and the latter (anion) negative.
A polyatomic ion is an ion that contains more than one type of atom e.g OH-, NO3²-, CO3²- etc. A polyatomic ion usually has an overall charge formed from the charges of the individual atoms that makes it up. For example, in OH-, the overall charge is -1.
Since a polyatomic ion can have an overall positive or negative charge, it must enter a reaction with another ion that complements it i.e. a negative polyatomic ion will react with a positive ion to neutralize its charge. Hence, this forms an IONIC COMPOUND. This is why most compounds with polyatomic ions are IONIC COMPOUNDS.
For example, CaCO3 is an ionic compound formed when Ca²+ (cation) reacts with the polyatomic anion: CO3²-
Out of the options, the best indicator is a color change since it is the only one that can't really be blamed on a physical change. you will eventually notice that during qualitative labs and some quantitative labs, usually the thing that you are looking for is either color change or the production of a precipitate to indicate the presence of a chemical reaction
The answer to this item is TRUE. This can be explained through the Graham's law. This law states that the rate at which gases diffuse is inversely proportional to the square root of their densities which is also related to their molecular masses.
i guess its e) Mn (VII)
if it was wrong pls let me knw
Answer:
1.14 × 10³ mL
Explanation:
Step 1: Given data
- Initial volume of the gas (V₁): 656.0 mL
- Initial pressure of the gas (P₁): 0.884 atm
- Final volume of the gas (V₂): ?
- Final pressure of the gas (P₂): 0.510 atm
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 0.884 atm × 656.0 mL/0.510 atm = 1.14 × 10³ mL