Answer:
option C.there is an accumulation of carbon dioxide.
Explanation:
Answer:
2.6 kJ
Explanation:
The formula for the amount of heat (q) absorbed by the water is
q = mCΔT
1. Calculate ΔT
ΔT = 23.5 °C - 22.1 °C = 1.4 °C
2. Calculate q
q₂ = mCΔT = 500 g × 4.184 J·°C⁻¹g⁻¹ × 1.4 °C = 2900 J = 2.9 kJ
Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
7 is atomic symbol 9 is atomic density 8 is the atomic number
Answer:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Explanation: