Answer:
Safety
Explanation:
Expressways are banked to resist centifugal action
Good morning.
We have:

Where
j is the unitary vector in the direction of the
y-axis.
We have that

We add the vector
-a to both sides:

Therefore, the magnitude of
b is
47 units.
Explanation:
Here is the complete question i guess. The jet plane travels along the vertical parabolic path defined by y = 0.4x². when it is at point A it has speed of 200 m/s, which is increasing at the rate .8 m/s^2. Determine the magnitude of acceleration of the plane when it is at point A.
→ The tangential component of acceleration is rate of increase in the speed of plane so,

→ Now we have to find out the radius of curvature at point A which is 5 Km (from the figure).
dy/dx = d(0.4x²)/dx
= 0.8x
Take the derivative again,
d²y/dx² = d(0.8x)/dx
= 0.8
at x= 5 Km
dy/dx = 0.8(5)
= 4
![p = \frac{[1+ (\frac{dy}{dx})^{2}]^{\frac{3}{2} } }{\frac{d^{2y} }{dx^{2} } }](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%7D%7B%5Cfrac%7Bd%5E%7B2y%7D%20%7D%7Bdx%5E%7B2%7D%20%7D%20%7D)
now insert the values,
![p = \frac{[1+(4)^{2}]^{\frac{3}{2} } }{0.8} = 87.62 km](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%284%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%7B0.8%7D%20%20%3D%2087.62%20km)
→ Now the normal component of acceleration is given by

= (200)²/(87.6×10³)
aₙ = 0.457 m/s²
→ Now the total acceleration is,
![a = [(a_{t})^{2} +(a_{n} )^{2} ]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%28a_%7Bt%7D%29%5E%7B2%7D%20%2B%28a_%7Bn%7D%20%29%5E%7B2%7D%20%5D%5E%7B0.5%7D)
![a = [(0.8)^{2} + (0.457)^{2}]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%280.8%29%5E%7B2%7D%20%2B%20%280.457%29%5E%7B2%7D%5D%5E%7B0.5%7D)
a = 0.921 m/s²
It's not possible to answer the question exactly the way it's written.
That's because we don't know anything about the direction they
drive at any time during the trip.
You see, "velocity" is not just a word that you use for 'speed' when
you want to sound smart and technical, like this question is doing.
"Velocity" is a quantity that's made up of speed AND THE DIRECTION
of the motion. If you don't know the direction of the motion, then you
CAN'T tell the velocity, only the speed.
Here are the average speeds that Lori's family drove on each leg
of their trip:
Speed = (distance covered) / (time to cover the distance) .
Leg-A:
Speed = 15km/10min = 1.5 km/min
Leg-B:
Speed = 20km/15min = (1 and 1/3) km/min
Leg-C
Speed = 24km/12min = 2 km/min
Leg-D:
Speed = 36km/9min = 4 km/min
Leg-E:
Speed = 14km/14min = 1 km/min
From lowest speed to highest speed, they line up like this:
[Leg-E] ==> [Leg-B] ==> [Leg-A] ==> [Leg-C] ==> [Leg-D]
1.0 . . . . . . . . 1.3 . . . . . . . 1.5 . . . . . . . 2.0 . . . . . . . 4.0 . . . . km/minute
Whoever drove Leg-D should have been roundly chastised
and then abandoned by the rest of the family. 36 km in 9 minutes
(4 km per minute) is just about 149 miles per hour !
Answer:
it is an 3d array of structure which involves inopperation methods
Explanation:
loollll