E=energy=5.09x10^5J = 509KJ
<span>M=mass=2250g=2.25Kg </span>
<span>C=specific heat capacity of water= 4.18KJ/Kg </span>
<span>ΔT= change in temp= ? </span>
<span>E=mcΔT </span>
<span>509=(2.25)x(4.18)xΔT </span>
<span>509=9.405ΔT </span>
<span>ΔT=509/9.405=54.1degrees </span>
<span>Initial temp = 100-54 = 46 degrees </span>
<span>Hope this helps :)</span>
Answer:
Negative
Explanation:
Observe that the object below moves in the positive direction with a changing velocity. An object which moves in the positive direction has a positive velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a negative acceleration).
The correct answer is the last option. The force that moving, charged particles exert on one another is called electromagnetic force. This force involves physical interaction between two electrically charged particles. It is seen as electromagnetic fields such as electric fields, magnetic fields and light.
Velocity is the rate of change of position with respect to time, whereas acceleration is the rate of change of velocity. Both are vector quantities (and so also have a specified direction), but the units of velocity are meters per second while the units of acceleration are meters per second squared.
The hang time of the ball is 4.08 s
Explanation:
The ball is in free fall motion: this means that it is acted upon gravity only, so its acceleration is the acceleration of gravity,

downward (the negative sign refers to the downward direction).
Since this is a uniformly accelerated motion, we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
First we calculate the time it takes for the ball to reach the maximum height, where the velocity is zero:
v = 0
Substituting:
u = +20 m/s

we find t

The motion of the ball is symmetrical, so the total time of flight is just twice the time needed to reach the maximum height, therefore:

Learn more about free fall:
brainly.com/question/1748290
brainly.com/question/11042118
brainly.com/question/2455974
brainly.com/question/2607086
#LearnwithBrainly