Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
Answer:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Explanation:
According to the Aufbau principle, electrons are filled in orbitals in order of increasing energy. The energy of orbitals in the electronic configuration of manganese increases from left to right, hence 3d orbital is much greater in energy than a 3p orbital.
The arrangement of orbitals in order of increasing energy is shown in the answer above.
N₂O₃
3 moles oxgyen atoms in 1 mole .
hope this helps!
Answer:
ⁿₐX => ²¹⁸₈₄Po
Explanation:
Let ⁿₐX be the isotope.
Thus, the equation can be written as follow:
²²²₈₆Rn —> ⁴₂α + ⁿₐX
Next, we shall determine the value of 'n' and 'a'. This can be obtained as follow:
222 = 4 + n
Collect like terms
222 – 4 = n
218 = n
Thus,
n = 218
86 = 2 + a
Collect like terms
86 – 2 = a
84 = a
Thus,
a = 84
ⁿₐX => ²¹⁸₈₄Po
²²²₈₆Rn —> ⁴₂α + ⁿₐX
²²²₈₆Rn —> ⁴₂α + ²¹⁸₈₄Po