Answer:
The velocity of the train is 82.8 km/h
Explanation:
The equation for the position of the train and the car is as follows:
x = x0 + v · t
Where:
x = position at time "t".
x0 = initial position.
v = velocity.
t = time.
First, let´s calculate the distance traveled by the car in 60 s (1/60 h). Let´s place the origin of the frame of reference at the front of the train when it starts to pass the car so that the initial position of the car is 0 (x0 = 0 m):
x = 0 m + 72 km/h · (1/60) h
x = 1.2 km.
Then, if the whole train passes the car at that time, the position of the front of the train at that time will be 1.2 km + 0.18 km = 1.38 km.
Then using the equation of position we can obtain the velocity:
x = x0 + v · t
1.38 km = 0 m + v · (1/60) h
1.38 km / (1/60) h = v
v = 82.8 km/h
The velocity of the train is 82,8 km/h
The same result could be obtained using the rear of the train. You only have to identify where the rear is at t = 0 and where it is at t = 60 s.
Try it!
Answer:
50,000 J because of the transformation of energy
Explanation:
K.E =1/2mv2
M=6kg
V=3m/s
K.E=1/2 X 6 X 3 X 3
=1/2 X 6 X 9
=27 J
Can be numbered in 2 different ways, one box represents one element, and organized by atomic number
Answer:
kinetic friction may be greater than 400 N or smaller than 400 N
Explanation:
As we know that maximum value of static friction on the rough surface is known as limiting friction and the formula of this limiting friction is known as

now when object is sliding on the rough surface then the friction force on that surface is known as kinetic friction and the formula of kinetic friction is known as

now we know that

so here value of limiting static friction force is always more than kinetic friction
also we know that
initially when body is at rest then static friction value will lie from 0 N to maximum limiting friction
and hence kinetic friction may be greater than static friction or if the static friction is maximum limiting friction then kinetic friction is smaller than static friction
so kinetic friction may be greater than 400 N or smaller than 400 N