Answer:
Explanation:
a)
Ff = μmgcosθ
Ff = 0.28(1600)(9.8)cos(-84)
Ff = 458.9217...
Ff = 460 N
b) ignoring the curves required at top and bottom which change the friction force significantly, especially at the bottom where centripetal acceleration will greatly increase normal forces and thus friction force.
W = Ffd
W = 458.9217(-49.4/sin(-84)
W = 22,795.6119...
W = 23 kJ
c) same assumptions as part b
The change in potential energy minus the work of friction will be kinetic energy.
KE = PE - W
½mv² = mgh - (μmgcosθ)d
v² = 2(gh - (μgcosθ)(h/sinθ))
v = √(2gh(1 - μcotθ))
v = √(2(9.8)(49.4)(1 - 0.28cot84))
v = 30.6552...
v = 31 m/s
Answer:
It attracts ferrous materials
Explanation:
A magnet attracts ferrous materials A ferrous materials are metallic substances or conductors that can conduct heat and electricity. Example of this ferrous materials includes iron, metal etc. Since magnets only can attracts metallic substance to itself, then we can also conclude that they attract ferrous materials since ferrous materials. possesses properties of a metal.
Magnets possesses both north and south poles.
The same of the bar magnets are known to repel each other while unlike poles attract each other.
Answer: the lvl wud remain the same
Explanation: as per Archimedes Principle, the weight of the water displaced by the object is equal to the weight of the object. When the ship initially went into the pool, it wud hv displaced some water. When the anchor is dropped, the level does not change coz the anchor was already in the ship and no extra weight has been added, so the weight of the anchor has already been accounted for in the first place when the ship was first placed in the pool
Answer:
4 A
Explanation:
The relationship between current, voltage and resistance in a circuit is given by Ohm's law:

where
V is the voltage
R is the resistance
I is the current
The equation can also be rewritten as

from which we see that the current is inversely proportional to the resistance, R.
In this problem, the initial current is I = 8 A. Then the resistance is doubled:
R ' = 2R
So the new current is

so the current is halved.