Answer:

Explanation:
Here, we want to calculate the final volume
We use the general gas equation here:

P1 is the initial pressure which is 0.850 atm
V1 is the initial volume which is 4.25 L
T1 is the initial temperature which is (23 + 273.15 = 296.15 K)
P2 is the final pressure which is 1.50 atm
V2 is the final volume which is unknown
T2 is the final temperature (11.5 + 273.15 = 284.65 K)
Substituting the values, we have:
Answer:
294 moles of P
Explanation:
For every 1 mol of P4O10 contains 4 mol of P
so;
73.5 mol P4O10 × <u> </u><u> </u><u> </u><u> </u><u> </u><u>4 mol P</u><u> </u><u> </u><u> </u><u> </u><u> </u>
1 mol P4O10
= 73.5 × 4
= 294 moles of P
Answer:
Yes
Explanation:
A gene pool is the sum total of all the genes(sum of alleles)of a species and population at any given time is known as gene pool.
The new species are created in nature by four mechanisms such as geographic isolation (allopatric speciation), reproductive isolation (sympatric speciation), mating behaviour (parapatric speciation).
Due to any of these factors when population acquire unique changes in their genes and enough changes have been introduced in the gene pool of the population with time, two population become distinct from each other and not able to interbreed leads to the formation of new species.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution