Answer:
0.382g
Explanation:
Step 1: Write the reduction half-reaction
Al³⁺(aq) + 3 e⁻ ⇒ Al(s)
Step 2: Calculate the mass of Al produced when a current of 100. A passes through the cell for 41.0 s
We will use the following relationships.
- 1 mole of electrons has a charge of 96486 C (Faraday's constant)
- 1 mole of Al is produced when 3 moles of electrons pass through the cell.
- The molar mass of Al is 26.98 g/mol.
The mass of Al produced is:

Alright sorry you're getting the answer hours later, but i can help with this.
so you're looking for specific heat, the equation for it is <span>macaΔTa = - mbcbΔTb with object a and object b. that's mass of a times specific heat of a times final minus initial temperature of a equals -(mass of b times specific heat of b times final minus initial temperature of b)
</span>so putting in your values is, 755g * ca * (75 celsius - 84.5 celsius) = -(50g * cb * (75 celsius - 5 celsius))
well we know the specific heat of water is always 4180J/kg celsius, so put that in for cb
with a bit of simplification to the equation by doing everything on each side first you have, -7172.5 * ca = -14630000
divide both sides by -7172.5 so you can single out ca and you get, ca= 2039.74
add units for specific heat which are J/kg celsius and the specific heat of the material is 2039.74 J/kg celsius
The fact that you want to yes is funny