Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus

So,



(b)
Now differentiate with respect to θ.


The first thing to do is to define the origin of the coordinate system as the point at which the moped journey begins.
Then, you must write the position vector:
r = -3j + 4i + 3j
Rewriting
r = 4i
To go back to where you started, you must go
d = -4i
That is to say, must travel a distance of 4Km to the west.
Answer
West, 4km.
The energy of a wave will remain constant if which of the following changes are made to it is given below
Explanation:
1.In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields. In sound waves, energy is transferred through vibration of air particles or particles of a solid through which the sound travels. In water waves, energy is transferred through the vibration of the water particles.
2.First of all for light which is a electromagnetic wave c=frequency*wavelength. As the wavelength increases the frequency decreases. This can be physically understood as the increase in red shift of the light. Also energy =h*frequency,hence increasing wavelength decreases the energy carried by the photon.
3.Wave frequency is related to wave energy. the more energy in a wave, the higher its frequency. The lower the frequency is, the less energy in the wave.
The total mechanical energy of the notebook is <u><em>19J</em></u>.
Mechanical energy is the sum of potential energy and kinetic energy. It has no kinetic energy, because it's not moving. So its potential energy is all the mechanical energy it has.
The average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
<h3>Acceleration of the box</h3>
The acceleration of the box is calculated as follows;
vf² = vi² + 2as
a = (vf² - vi²)/2s
a = (11.5² - 13²) / (2 x 8.5)
a = -2.16 m/s²
<h3>Time of motion of the box</h3>
The time taken for the box to travel is calculated as follows;
a = (vf - vi)/t
t = (vf - vi) / a
t = (11.5 - 13) / (-2.16)
t = 0.69 s
<h3>Average power supplied by the friction</h3>
P = Fv
P = (ma)(vf - vi)
P = (1 x -2.16) x (11.5 - 13)
P = 3.24 W
Thus, the average power supplied to the box by friction while it slows from 13 m/s to 11.5 m/s is 3.24 W.
Learn more about average power here: brainly.com/question/19415290
#SPJ1