Pure water may be identified by its density: it will have the lowwest density of the three solutions, given that the solutes (salt and sugar) increase the density (this is the easiests and quickest way).
You can also measure the freezing points or boling points to identify the pure water because the solutes depress the freezing points and increase the boling points.
To differentiate sugar water and salt water, you can probe which one conducts electricity, because salt water is a conductor (given that it ionizes into Na+ and Cl-) but sugar water is not a conductor.
Answer:
can we see the type that is shown?
Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
They bond because they want to make their outer electron shells more stable
Hope this helps
Have a happy holidays