<span>An example of sublimation is when a dry ice changes to carbon dioxide when kept in an open container. Sublimation is a change from solid phase to gas phase without passing through the liquid state. In this example, it is clear that the dry ice is solid form and it evaporates as gas without passing through the liquid state.</span>
Answer:
B sugar in water
Explanation:
because sugar dissolves in water while the others don't
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb
Half-life is the length of time it takes for half of the radioactive atoms of a specific radionuclide to decay. A good rule of thumb is that, after seven half-lives, you will have less than one percent of the original amount of radiation.
<h3>What do you mean by half-life?</h3>
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive.
<h3>What affects the half-life of an isotope?</h3>
Since the chemical bonding between atoms involves the deformation of atomic electron wavefunctions, the radioactive half-life of an atom can depend on how it is bonded to other atoms. Simply by changing the neighboring atoms that are bonded to a radioactive isotope, we can change its half-life.
Learn more about half life of an isotope here:
<h3>
brainly.com/question/13979590</h3><h3 /><h3>#SPJ4</h3>