Answer:
A) 6.00 mol.
B) 0.375 L or 375 mL
C) 6.00 M
Explanation:
Hello,
A) In this case, from the definition of molarity, we compute the moles for the given volume and concentration:

B) In this case, from the stock solution, the required volume is:

C) In this case, we apply the following formula for dilution process:

Thus, solving for the final molarity, we obtain:

Regards.
Answer:
Equilibrium constant Kc for the reaction will be 1.722
Explanation:
O2(g)+NO(g)→CO(g)+ NO2(g)
0.88 3.9 --- ---
0.88x 3.9-x x x
GIVEN:
0.88X-X= 0.11
⇒ X=0.77
CO2(g)+NO(g) → CO(g) + NO2(g)
0.88 3.9 --- ---
0.88-x 3.9-x x x
= 3.13 0.77 0.77
=0.11
Kc = ![\frac{[CO] *[NO2]} {[CO2]*[NO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO%5D%20%2A%5BNO2%5D%7D%20%7B%5BCO2%5D%2A%5BNO%5D%7D%20)
=
= 1.722
Answer:
Explanation:
HA(aq)+H2O(l)⟺H3O+(aq)+A−(aq)(1)
you need to solve for the Ka value. To do that you use
Ka=[H3O+][A−][HA](2)
Another necessary value is the pKa value, and that is obtained through pKa=−logKa
The procedure is very similar for weak bases. The general equation of a weak base is
BOH⟺B++OH−(3)
Solving for the Kbvalue is the same as the Ka value. You use the formula
Kb=[B+][OH−][BOH](4)
The pKb value is found through pKb=−logKb
The Kw value is found withKw=[H3O+][OH−].
Kw=1.0×10−14(5)
Elevated carbon dioxide mean too much acid in the blood. <span>Increase acid excretion (intercalated cells secrete H+ into tubules) and decrease bicarbonate excretion. They also make new bicarbonate to add to the plasma.</span>
Explanation:
Both conduction and convection are both forms of heat transfer from one place to another.
- In conduction, there must be contact between two bodies for the process to take place but in convection, the matter moves to transfer heat.
- Conduction mostly occurs in solid substances whereas convection occurs mostly in fluids.
- Heat transfer in conduction is quite slow compared to convection which is much faster.
Example of conduction is heating of iron pot when cooking
Example of convection is the refrigerating system.