Answer:
The work done on the hose by the time the hose reaches its relaxed length is 776.16 Joules
Explanation:
The given spring constant of the of the spring, k = 88.0 N/m
The length by which the hose is stretched, x = 4.20 m
For the hose that obeys Hooke's law, and the principle of conservation of energy, the work done by the force from the hose is equal to the potential energy given to the hose
The elastic potential energy, P.E., of a compressed spring is given as follows;
P.E. = 1/2·k·x²
∴ The potential energy given to hose, P.E. = 1/2 × 88.0 N/m × (4.20 m)²
1/2 × 88.0 N/m × (4.20 m)² = 776.16 J
The work done on the hose = The potential energy given to hose, P.E. = 776.16 J
Answer:
h = 22.35 m
Explanation:
given,
initial speed of the rock,u = 0 m/s
length of the window,l = 2.7 m
time taken to cross the window,t = 0.129 s
Speed of the rock when it crosses the window


v = 20.93 m/s
height of the building above the window
using equation of motion
v² = u² + 2 g h
20.93² = 0² + 2 x 9.8 x h
h = 22.35 m
Hence, the height of the building above the top of window is equal to h = 22.35 m
If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.
a. a gradual approximation to the final solution
Explanation:
Means/end analysis is a process that involves creation of an end goal to enable the identified means to apply.
In this techniques sub-goals are formed to eliminate the challenges faced in application of a selected operator.
It starts by identifying a predetermined goal which is followed by actions that will led to the goal.
Learn More
Mean/end analysis : brainly.com/question/1213695
Keywords : mean, end, analysis
#LearnwithBrainly