Answer:bippity boppity yee
Explanation:
Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data: True.
<h3>What is machine learning?</h3>
Machine learning (ML) is also known as artificial intelligence (AI) and it can be defined as a subfield in computer science which typically focuses on the use of computer algorithms, data-driven techniques (methods) and technologies to develop a smart computer-controlled robot that has the ability to automatically perform and manage tasks that are exclusively meant for humans or solved by using human intelligence.
In Machine learning (ML), data-driven techniques (methods) are used to learn source ranges directly from observed acoustic data in a bid to proffer solutions to source localization in ocean acoustics.
In conclusion, a normalized sample covariance matrix (SCM) is constructed and used as the input, especially after pre-processing the pressure that's received by a vertical linear array in Machine learning (ML).
Read more on machine learning here: brainly.com/question/25523571
#SPJ1
If you've ever mixed water and oil together,you've probably noticed that the oil rises to the top and the water stays at the bottom-- no matter how much you try to shake them. This is because oil is less dense than water, making it float to the top. The molecules in oil are larger than those in water, so they don't pack as tightly together as they do in water. In a mixture of oil and vinegar, the<span> </span>oil <span>floats on the </span>vinegar/<span>water mixture, while the solids sink to the bottom. So, if one material floats over another, the material on top is less dense.
Let me know if this helps! :)</span>
Explanation:
Given that,
(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :
(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :
Therefore, this is the required solution.
Answer:
Net force on the wagon is 200 N
Explanation:
As we know by Newton's II law that net force on the system of mass is given as product of mass and acceleration
Here we know that
mass = 100 kg
a = 2 m/s/s
now we have