The answer should be C) Slide against each other.
Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
Answer
given,
weight of the oak board = 600 N
Weight of Joe = 844 N
length of board = 4 m
Joe is standing at 1 m from left side
vertical wire is supporting at the end.
Assuming the system is in equilibrium
T₁ and T₂ be the tension at the ends of the wire
equating all the vertical force
T₁ + T₂ = 600 + 844
T₁ + T₂ = 1444...........(1)
taking moment about T₂
T₁ x 4 - 844 x 3 - 600 x 2 = 0
T₁ x 4 = 3732
T₁ = 933 N
from equation (1)
T₂ = 1444 - 933
T₂ = 511 N
Answer:
emf = 11.667 V
Explanation:
Given: charge q = 0.060 C, electric potential energy E =0.70 J,
Solution :
by definition 1 volt = 1 joule per coulomb
so Voltage = emf = E/C
emf = 0.70 J / 0.060 C
emf = 11.667 V
It would b 6 days and 6 hours
You would times 16 by 8 which gives 128km a day. To find how many days you would divide 800 by how many kilometres they cover a day which is 128
So 800/128 =6.25 which converts to 6 days and 6 hours.