Answer:
the pressure reading when connected a pressure gauge is 543.44 kPa
Explanation:
Given data
tank volume (V) = 400 L i.e 0.4 m³
temperature (T) = 25°C i.e. 25°C + 273 = 298 K
air mass (m) = 3 kg
atmospheric pressure = 98 kPa
To find out
pressure reading
Solution
we have find out pressure reading by gauge pressure
i.e. gauge pressure = absolute pressure - atmospheric pressure
first we find absolute pressure (p) by the ideal gas condition
i.e pV = mRT
p = mRT / V
p = ( 3 × 0.287 × 298 ) / 0.4
p = 641.44 kPa
so
gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 641.44 - 98
gauge pressure = 543.44 kPa
Answer:
Given:
high temperature reservoir 
low temperature reservoir 
thermal efficiency 
The engines are said to operate on Carnot cycle which is totally reversible.
To find the intermediate temperature between the two engines, The thermal efficiency of the first heat engine can be defined as

The thermal efficiency of second heat engine can be written as

The temperature of intermediate reservoir can be defined as

Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W
Answer:
fluid nozzle that is too large