Answer:
a) 4.7 kΩ, +/- 5%
b) 2.0 MΩ, +/- 20%
Explanation:
a) If the resistor has the following combination of color bands:
1) Yellow = 1st digit = 4
2) Violet = 2nd digit = 7
3) Red = multiplier = 10e2
4) Gold = tolerance = +/- 5%
this means that the resistor has 4700 Ω (or 4.7 kΩ), with 5% tolerance.
b) Repeating the process for the following combination of color bands:
1) Red = 1st digit = 2
2) Black = 2nd digit = 0
3) Green = multiplier = 10e5
4) Nothing = tolerance = +/- 20%
This combination represents to a resistor of 2*10⁶ Ω (or 2.0 MΩ), with +/- 20% tolerance.
Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
eojcjksjsososisjsiisisiiaodbjspbcpjsphcpjajosjjs ahahhahahahahahahahahahahahahhhahahahaahahhahahahahaahahahahaha
Answer:
There are 6 types of pressure control valves and their function is to regulate the pressure below a threshold level within safe limits and to maintain and control pressure of a particular circuit.
Explanation:
The six type of Pressure valve with their functions are given below:
a. Unloading Valve:
These type of pressure valve are used to pour fluid into the container at very low or no pressure.
b. Safety valve:
These are used when the pressure within the vessel is in excess as inside temperature is near about preset [point point then these valves are open to release the extra pressure and are closed once normal conditions are regained.
c. Pressure Reducing Valve:
These are basically used for the control of the pressure in downstream not exceeding the design limits.
d. Pressure Relief Valves:
These are basically used to limit and regulate the pressure of any system.
e. Counter Balance Valve:
These are used to develop pressure in the reverse direction at the actuator's return line in order to keep the load under control.
f. Sequence Valve:
These are used to maintain sequence or order in the operations of two parts or branches.
Answer:
b) false
Explanation:
We know that Otto cycle is the ideal cycle for all petrol working engine.In Otto cycle all process are consider is ideal ,means there is no any ir-reversibility in the processes.
It consist four processes
1-2:Reversible adiabatic compression
2-3:Constant volume heat addition
3-4:Reversible adiabatic expansion
3-4:Constant volume heat rejection
Along with above 4 processes intake and exhaust processes are parallel to each other.From the P-v diagram we can see that all processes.
But actually in general we are not showing intake and exhaust line then it did not mean that in Otto cycle did not have intake and exhaust processes.