Answer:
There are three main sources of heat in the deep earth: (1) heat from when the planet formed and accreted, which has not yet been lost; (2) frictional heating, caused by denser core material sinking to the center of the planet; and (3) heat from the decay of radioactive elements.
Answer:
The lung
Explanation:
The model of the respiratory system made by Megan consists of two balloons. The first balloon stretched across the bottom of the bottle represents the diaphragm which contracts and relaxes to allow air in and out of the lungs. The balloon inside the bottle represents one lung.
Breathing in causes the balloon inside the bottle to be filled with air. This is preceded by the expansion of the diaphragm which makes the lungs to be filled with air. Breathing out causes a contraction of the diaphragm thus making the lungs to let out air.
Answer:
-A molecule is the smallesr part is compound whereas a compound is the combination of two or more atoms in a fixed proportion by wiehgt.
- A glass of water is an example of compound but a small portion of water can be called molecule.
The total kinetic energy of the gas sample is 3.3 KJ
<h3>What is kinetic energy? </h3>
This is the energy possessed by an object in motion. Mathematically, it can be expressed as:
KE = ½mv²
Where
- KE is the kinetic energy
- m is the mass
- v is the velocity
<h3>How to determine the mass of the fluorine gas</h3>
- Molar mass of fluorine gas = 38 g/mol
- Mole of fluorine gas = 1 mole
- Mass of fluorine gas = ?
Mass = mole × molar mass
Mass of fluorine gas = 1 × 38
Mass of fluorine gas = 38 g
<h3>How to determine the KE of the gas sample</h3>
- Mass (m) = 38 g = 38 / 1000 = 0.038 Kg
- Velocity (v) = 415 m/s
- Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.038 × 415²
KE = 3272.275 J
Divide by 1000 to express in kilojoule
KE = 3272.275 / 1000
KE = 3.3 KJ
Learn more about energy:
brainly.com/question/10703928
#SPJ1
Answer:
Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram.
Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides.
When dealing with the force of gravity between two objects, there are only two things that are important – mass, and distance. The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them.
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released when the objects fall towards each other.
In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Explanation: