Solution :
Acceleration due to gravity of the earth, g ![$=\frac{GM}{R^2}$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7BGM%7D%7BR%5E2%7D%24)
![$g=\frac{G(4/3 \pi R^2 \rho)}{R^2}=G(4/3 \pi R \rho)$](https://tex.z-dn.net/?f=%24g%3D%5Cfrac%7BG%284%2F3%20%5Cpi%20R%5E2%20%5Crho%29%7D%7BR%5E2%7D%3DG%284%2F3%20%5Cpi%20R%20%5Crho%29%24)
Acceleration due to gravity at 1000 km depths is :
![$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$](https://tex.z-dn.net/?f=%24g%3DG%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%28R-d%29%20%5Crho%5Cright%29%24)
![$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-1000) \times 5.5 \times 10^3\right)$](https://tex.z-dn.net/?f=%24g%3D6.67%20%5Ctimes%2010%5E%7B-11%7D%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Ctimes%203.14%20%5Ctimes%20%286371-1000%29%20%5Ctimes%205.5%20%5Ctimes%2010%5E3%5Cright%29%24)
![$= 822486 \times 10^{-8}$](https://tex.z-dn.net/?f=%24%3D%20822486%20%5Ctimes%2010%5E%7B-8%7D%24)
![$=0.822 \times 10^{-2} \ km/s$](https://tex.z-dn.net/?f=%24%3D0.822%20%5Ctimes%2010%5E%7B-2%7D%20%5C%20km%2Fs%24)
= 8.23 m/s
Acceleration due to gravity at 2000 km depths is :
![$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$](https://tex.z-dn.net/?f=%24g%3DG%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%28R-d%29%20%5Crho%5Cright%29%24)
![$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-2000) \times 5.5 \times 10^3\right)$](https://tex.z-dn.net/?f=%24g%3D6.67%20%5Ctimes%2010%5E%7B-11%7D%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Ctimes%203.14%20%5Ctimes%20%286371-2000%29%20%5Ctimes%205.5%20%5Ctimes%2010%5E3%5Cright%29%24)
![$= 673552 \times 10^{-8}$](https://tex.z-dn.net/?f=%24%3D%20673552%20%5Ctimes%2010%5E%7B-8%7D%24)
![$=0.673 \times 10^{-2} \ km/s$](https://tex.z-dn.net/?f=%24%3D0.673%20%5Ctimes%2010%5E%7B-2%7D%20%5C%20km%2Fs%24)
= 6.73 m/s
Acceleration due to gravity at 3000 km depths is :
![$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$](https://tex.z-dn.net/?f=%24g%3DG%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%28R-d%29%20%5Crho%5Cright%29%24)
![$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-3000) \times 5.5 \times 10^3\right)$](https://tex.z-dn.net/?f=%24g%3D6.67%20%5Ctimes%2010%5E%7B-11%7D%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Ctimes%203.14%20%5Ctimes%20%286371-3000%29%20%5Ctimes%205.5%20%5Ctimes%2010%5E3%5Cright%29%24)
![$= 3371 \times 153.86 \times 10^{-8}$](https://tex.z-dn.net/?f=%24%3D%203371%20%5Ctimes%20153.86%20%5Ctimes%2010%5E%7B-8%7D%24)
= 5.18 m/s
Acceleration due to gravity at 4000 km depths is :
![$g=G\left(\frac{4}{3}\pi (R-d) \rho\right)$](https://tex.z-dn.net/?f=%24g%3DG%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Cpi%20%28R-d%29%20%5Crho%5Cright%29%24)
![$g=6.67 \times 10^{-11}\left(\frac{4}{3}\times 3.14 \times (6371-4000) \times 5.5 \times 10^3\right)$](https://tex.z-dn.net/?f=%24g%3D6.67%20%5Ctimes%2010%5E%7B-11%7D%5Cleft%28%5Cfrac%7B4%7D%7B3%7D%5Ctimes%203.14%20%5Ctimes%20%286371-4000%29%20%5Ctimes%205.5%20%5Ctimes%2010%5E3%5Cright%29%24)
![$= 153.84 \times 2371 \times 10^{-8}$](https://tex.z-dn.net/?f=%24%3D%20153.84%20%5Ctimes%202371%20%5Ctimes%2010%5E%7B-8%7D%24)
![$=0.364 \times 10^{-2} \ km/s$](https://tex.z-dn.net/?f=%24%3D0.364%20%5Ctimes%2010%5E%7B-2%7D%20%5C%20km%2Fs%24)
= 3.64 m/s
Answer:mile
Explanation: heres a hint think aboyt the distance between your house to school
Given :
The average acceleration of a tennis ball that has an initial velocity of 6.0 m/s.
and a final velocity of 7.3 m/s.
It is in contact with a tennis racket for 0.094 s
To Find :
The average acceleration of the tennis ball.
Solution :
We know, average acceleration is given by :
![a_{avg}=\dfrac{Final \ velocity-Initial\ velocity}{Time\ Taken}\\\\a_{avg}=\dfrac{7.3-6.0}{0.094}\ m/s^2\\\\a_{avg}=13.83\ m/s^2](https://tex.z-dn.net/?f=a_%7Bavg%7D%3D%5Cdfrac%7BFinal%20%5C%20velocity-Initial%5C%20velocity%7D%7BTime%5C%20Taken%7D%5C%5C%5C%5Ca_%7Bavg%7D%3D%5Cdfrac%7B7.3-6.0%7D%7B0.094%7D%5C%20m%2Fs%5E2%5C%5C%5C%5Ca_%7Bavg%7D%3D13.83%5C%20m%2Fs%5E2)
Therefore, average velocity is given by 13.83 m/s².
Hence, this is the required solution.
Removing an electron from a neutral atom will result in an atom that is positive.