True because energy can change its speed because of temperature and also its direction
Answer:
Explanation:
I'm in 17th column , a nometal, and a solid at room temperature. What am i
Answer
a) Using dimensional analysis we cannot derive the relation, But we can check the correctness of the formula.

now, L H S
s = distance
dimension of distance = [M⁰L¹T⁰]
now, equation on the right hand side
R H S
u = speed
u = m/s
Dimension of speed = [M⁰L¹T⁻¹]
dimension of time
t = sec
Dimension of time = [M⁰L⁰T¹]
Dimension of 'ut' = [M⁰L¹T⁻¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
now, acceleration= a
a = m /s²
dimension of acceleration = [M⁰L¹T⁻²]
dimension of (at²) = [M⁰L¹T⁻²][M⁰L⁰T¹][M⁰L⁰T¹]
= [M⁰L¹T⁰]
hence, the dimension are balanced.
so, L H S = R H S
b) Moment of inertia of hollow sphere = 
Moment of inertia of solid sphere = 
we know,


Torque is the force that causes rotation
If the same amount of torque is applied to both spheres the sphere with bigger moment of inertia would have smaller angular velocity.
Thus the solid sphere would accelerate more.
Answer: position (x) and time (t)
Explanation:
A body is said to be in motion when its position changes with time with respect to a stationary observer.
Following are the types of motion:
<u>Uniform motion</u>: When equal amount of distance is covered in equal intervals of time.
<u>Non-Uniform motion</u>: When unequal amount of distance is covered in equal intervals of time.
Motion can be of the following types as well:
<u>Rectilinear motion</u>: when object moves in a straight line.
<u>Circular motion</u>: when object moves in a curved path.
<u>Periodic motion</u>: when motion repeats itself in fixed intervals of time.
Thus, in order to define motion, only two variables are required: position and time. Measuring these variables can determine whether the object is in motion or not and the type of motion.