Answer:
A. F=6.65*10^{-10}N
B. south - north
Explanation:
A) We use the Lorentz force
F = qv X B
|F| = qvB
to calculate the magnitude of the force we need the speed of the of the ball.

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

B)
b. south - north (by the rigth hand rule)
I hope this is usefull for you
regards
Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current
. In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For
,


For
,


The current in the entire battery is equivalent to,


Our values are,




Replacing in the current for t= 0.4m/s



Kinetic energy, KE, is modeled by the formula

, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.
Answer:
η = 0.882 = 88.2 %
Explanation:
The efficiency of the pulley system can be given as follows:

where,
η = efficiency of pulley system = ?
W_out = Output Work = (600 N)(0.6 m) = 360 J
W_in = Input Work = (35.7 N)(11.43 m) = 408.051 J
Therefore,

<u>η = 0.882 = 88.2 %</u>
how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3