Answer:
let me check the answer for you
Answer:
-20000 kgm/s
Explanation:
Impulse: This can be defined as the product of the mass of a body and its change in velocity. The S.I unit of impulse is kgm/s.
Mathematically, impulse can be expressed as
I = m(v-u).............. Equation 1.
Where I = impulse applied to the car to bring it to rest, m = mass of the car, u = initial velocity of the car, v = final velocity of the car.
Given: m = 1000 kg, u = 20 m/s, v = 0 m/s ( to rest)
Substitute into equation 1
I = 100(0-20)
I = 1000(-20)
I = -20000 kgm/s
Hence the impulse applied to the car to bring it to rest = -20000 kgm/s
Answer:
D) 21
Explanation:
When gas absorbs light , electron at lower level jumps to higher level .
and the difference of energy of orbital is equal to energy of radiation absorbed.
Here energy absorbed is equivalent to wavelength of 91.63 nm
In terms of its energy in eV , its energy content is eual to
1243.5 / 91.63 = 13.57 eV. This represents the difference the energy of orbit .
Electron is lying in lowest or first level ie n = 1.
Energy of first level
= - 13.6 / 1² = - 13.6 eV.
Energy of n th level = - 13.6 / n². Let in this level electron has been excited
Difference of energy
= 13.6 - 13.6 / n² = 13.57 ( energy of absorbed radiation)
13.6 / n² = 13.6 - 13.57 = .03
n² = 13.6 / .03 = 453
n = 21 ( approx )
Answer:
Explanation:
Intensity of light is inversely proportional to distance from source
I ∝ 1 /r² where I is intensity and r is distance from source . If I₁ and I₂ be intensity at distance r₁ and r₂ .
I₁ /I₂ = r₂² /r₁²
If r₂ = 4r₁ ( given )
I₁ / I₂ = (4r₁ )² / r₁²
= 16 r₁² / r₁²
I₁ / I₂ = 16
I₂ = I₁ / 16
So intensity will become 16 times less bright .
"16 times " is the answer .