Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
Answer:
the partial of colloidal are smaller and they are not heavy whereas the partial of suspension are larger but they are heavy and less movement thus they settle down due to gravity
L = 0 to n-1. Hence, it can have values 0, 1, 2.
<span>m = -l to +l. Hence, it can have values -2, -1, 0, 1, 2 </span>
<span>s = +1/2 and -1/2</span>
6,160.506
Explanation:
That is, the molar mass of a substance is the mass (in grams per mole) of 6.022 × 1023 atoms, molecules, or formula units of that substance. In each case, the number of grams in 1 mol is the same as the number of atomic mass units that describe the atomic mass, the molecular mass, or the formula mass, respectively.
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.