Hello!
We know that by the Law of Avogrado, for each mole of substance we have 6.02 * 10²³ atoms, if:
The molar mass of water (H2O)
H = 2 * (1u) = 2u
O = 1 * (16u) = 16u
---------------------------
The molar mass of H2O = 2 + 16 = 18 g / mol
If:
1 mol we have 6.02 * 10²³ atoms
1 mole of H2O we have 18 g
Then we have:
18 g ------------- 6.02 * 10²³ atoms
5 g -------------- x
I Hope this helps, greetings ... DexteR! =)
Your answer would be 58.12g/mol ;)
Answer:
N2
Explanation:
We use the ideal gas equation to calculate the number of moles of the diatomic gas. Then from the number of moles we can get
Given:
P = 2atm
1atm = 101,325pa
2atm = 202,650pa
T = 27 degrees Celsius = 27 + 273.15 = 300.15K
V = 2.2L
R = molar gas constant = 8314.46 L.Pa/molK
PV = nRT
Rearranging n = PV/RT
Substituting these values will yield:
n = (202,650 * 2.2)/(8314.46* 300.15)
n = 0.18 moles
To get the molar mass, we simply divide the mass by the number of moles.
5.1/0.18 = 28.5g/mol
This is the closest to the molar mass of diatomic nitrogen N2.
Hence, the gas is nitrogen gas
1. “what forms of energy conversions occur during the process of photosynthesis? (How does energy transform?) 2. What is missing from the food web but is essential to maintain equilibrium? A. Soil B.water C. Decomposers D. Oxygen
Explanation:
2Mg⁺ 2HNO₃ = Mg(NO₃)₂ + H₂