Answer:
Explanation:
Since the surface is frictionless therefore there will be no friction force on block but there will be weight of block which we can divide in to two components i.e. mgcosθ &mgsinθ which is perpendicular and parallel to the surface respectively.
In response to mgcosθ ramp will apply a normal force to the block which will be of equal magnitude to that of mgcosθ.
Therefore Ramp will apply a Force of mgcosθ on block where m is the mass of block.
Answer : The final pressure of the system in atm is, 3.64 atm
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= first pressure = 8.19 atm
= second pressure = 2.65 atm
= first volume = 2.14 L
= second volume = 9.84 L
= final pressure = ?
= final volume = 2.14 L + 9.84 L = 11.98 L
Now put all the given values in the above equation, we get:


Therefore, the final pressure of the system in atm is, 3.64 atm
Answer:
negative particles
Explanation:
An atom can be defined as the smallest unit comprising of matter that forms all chemical elements. Thus, atoms are basically the building blocks of matters and as such defines the structure of a chemical element.
Generally, these atoms are typically made up of three distinct particles and these are protons, neutrons and electrons.
In Chemistry, electrons can be defined as subatomic particles that are negatively charged and as such has a magnitude of -1.
Valence electrons can be defined as the number of electrons present in the outermost shell of an atom. Valence electrons are used to determine whether an atom or group of elements found in a periodic table can bond with others. Thus, this property is typically used to determine the chemical properties of elements.
Hence, an object is most likely to become electrically charged by gaining or losing negative particles.
Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Answer:
(a) 62.5 m
(b) 7.14 s
Explanation:
initial speed, u = 35 m/s
g = 9.8 m/s^2
(a) Let the rocket raises upto height h and at maximum height the speed is zero.
Use third equation of motion


h = 62.5 m
Thus, the rocket goes upto a height of 62.5 m.
(b) Let the rocket takes time t to reach to maximum height.
By use of first equation of motion
v = u + at
0 = 35 - 9.8 t
t = 3.57 s
The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.