Answer:
A mixture whose components are soluble in each other. ... a solution that has water as its solvent; most have an ionic substance as the solute, may contain a liquid ... The suspensions of particles larger than individual ions or molecules, but the ... This effect is used to determine whether a mixture is a true solution or a colloid.
process of solute particles being surrounded by water molecules arranged in a ... solution. homogeneous mixture consisting of a solute dissolved into a solvent. ... apart from the crystal, the individual ions are then surrounded by solvent particles in a ... are intermediate in size between those of a solution and a suspension.
A suspension is a heterogeneous mixture in which some of the particles ... The particles in a suspension are far larger than those of a solution, so gravity is … ... Particle size: 0.01-1nm; atoms, ions or molecules, Particle size: ... solutions because the individual dispersed particles of a colloid cannot be seen.
Explanation:
The proximate reason for the uptake by plants of nutrients like ammonium nitrate is homeostatis
<h3>
What is homeostasis?</h3>
Homeostasis refers to an organism's ability to regulate various physiological processes to keep internal states steady and balanced.
<h3>How does plant perform homeostatis?</h3>
As water leaves the plant tissues into the atmosphere, it takes energy with it in the form of heat.
Much like when we sweat, this allows the plant to cool and maintain homeostasis.
Similarly, the same process allows plants to absorb nutrient like ammonium nitrate.
Thus, the proximate reason for the uptake by plants of nutrients like ammonium nitrate is homeostatis.
Learn more about homeostatis here: brainly.com/question/1046675
#SPJ1
Answer: In Arizona, climate change is already making deadly heat waves, droughts and wildfires across the state worse. These impacts have real costs on Arizonans' health and economy, including heat-related deaths, higher electricity bills, crop losses and more.
Explanation:
https://www.edf.org/climate/costofinaction- this is where I gathered this info. Not mine. But I hope it helps!
First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC