Answer: Option (3) is the correct answer.
Explanation:
Aerobic organisms are the organisms which survive and grow in the presence of oxygen.
When oxidation of glucose occurs in the presence of oxygen then it is known as aerobic respiration.
In aerobic respiration, food releases energy to produce ATP which is necessary for cell activity. There is complete breakdown of glucose in aerobic respiration that is why more energy is released. Therefore, aerobic organisms become active.
Thus, we can conclude that characteristics very active, efficient use of energy describes aerobic organisms.
Entropy change is defined only along the path of an internally reversible process path.
<h3><u>What is Entropy Change </u>?</h3>
- Entropy is a measure of a thermodynamic system's overall level of disorder or non-uniformity. The thermal energy that a system was unable to use to perform work is known as entropy.
- Entropy Change is a phenomena that measures how disorder or randomness have changed inside a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work. More unpredictability in a thermodynamic system indicates high entropy.
- Entropy is a state function, hence it is independent of the direction that the thermodynamic process takes.
- The rearranging of atoms and molecules from their initial state causes the change in entropy.
- This may result in a decrease or rise in the system's disorder or unpredictability, which will, in turn, result in a corresponding drop or increase in entropy.
To view more questions about entropy change, refer to:
brainly.com/question/4526346
#SPJ4
Answer: After 4710 seconds, 1/8 of the compound will be left
Explanation:
Using the formulae
Nt/No = (1/2)^t/t1/2
Where
N= amount of the compound present at time t
No= amount of compound present at time t=0
t= time taken for N molecules of the compound to remain = 4710 seconds
t1/2 = half-life of compound = 1570 seconds
Plugging in the values, we have
Nt/No = (1/2)^(4710s/1570s)
Nt/No = (1/2)^3
Nt/No= 1/8
Therefore after 4710 seconds, 1/8 molecules of the compound will be left
According to the task, you are proveded with patial pressure of CO2 and graphite, and here is complete solution for the task :
At first you have to find n1 =moles of CO2 and n2 which are moles of C
<span>The you go :
</span>

n1 n2 0
-x -x +2x

After that you have to use the formula

Then you have to solve x, and for that you have to use <span>RT/V
And to find total values:</span>

I am absolutely sure that this would be helpful for you.
Im pretty sure the answer is <span> 0.01218859659g
not 100% sure tho so please consult someone else b4 answering
i hope this helps!!</span>