In order to deprotonate an acid, we must remove protons in order to achieve a more stable conjugate base. For this example, we can use the relationship between carboxylic acid and hydroxide.
Deprotonation is the removal of a proton from a specific type of acid in reaction to its coming into contact with a strong base. The compound formed from this reaction is known as the conjugate base of that acid. The opposite process is also possible and is when a proton is added to a special kind of base. This is a process referred to as protonation, which forms the conjugate acid of that base.
For the example we have chosen to give, the conjugate base is the carboxylate salt. This would be the compound formed by the deprotonated carboxylic acid. The base in question was strong enough to deprotonate the acid due to the greater stability offered as a conjugated base.
To learn more visit:
brainly.com/question/5613072?referrer=searchResults
A nanoparticle is larger than an atom. A nanoparticle is usually made from a few hundred atoms. These particles range from 1 nanometers to 100 nanometers. On the other hand an atom ranges from 0.1 nanometers to 105 nanometers. Using the sizes above, one can clearly see and understand that an atom is smaller.
Solid- particles are packed tightly together so they don’t move much
Liquid- particles are still close together but move freely
Gas- particles are neither close together nor fixed in place
Answer:
The basic steps of the scientific method are: 1) make an observation that describes a problem, 2) create a hypothesis, 3) test the hypothesis, and 4) draw conclusions and refine the hypothesis.