Answer:
Velocity of the electron at the centre of the ring, 
Explanation:
<u>Given:</u>
- Linear charge density of the ring=

- Radius of the ring R=0.2 m
- Distance of point from the centre of the ring=x=0.2 m
Total charge of the ring

Potential due the ring at a distance x from the centre of the rings is given by

The potential difference when the electron moves from x=0.2 m to the centre of the ring is given by

Let
be the change in potential Energy given by

Change in Potential Energy of the electron will be equal to the change in kinetic Energy of the electron

So the electron will be moving with 
<u>Answer:</u> The velocity of released alpha particle is 
<u>Explanation:</u>
According to law of conservation of momentum, momentum can neither be created nor be destroyed until and unless, an external force is applied.
For a system:

where,
= Initial mass and velocity
= Final mass and velocity
We are given:

Putting values in above equation, we get:

Hence, the velocity of released alpha particle is 
Answer:
Second Choice.
Explanation:
Jack's Power = W/t
Jill's Power = 2W/(0.5)*t
2/0.5 = 4
Jill's Power = 4*W/t
Jill's Power is 4 times greater than Jack's
Second Choice
Answer:
A is the answer. Im only 12 and i hope this explanation helps you.
Explanation:
Lenz's Law of Electromagnetic Induction. Faraday's Law tells us that inducing a voltage into a conductor can be done by either passing it through a magnetic field, or by moving the magnetic field past the conductor and that if this conductor is part of a closed circuit, an electric current will flow.