Answer:
9 × 10⁻³ mol·L⁻¹s⁻¹
Explanation:
Data:
k = 1 × 10⁻³ L·mol⁻¹s⁻¹
[A] = 3 mol·L⁻¹
Calculation:
rate = k[A]² = 1 × 10⁻³ L·mol⁻¹s⁻¹ × (3 mol·L⁻¹)² = 9 × 10⁻³ mol·L⁻¹s⁻¹
The principle states that the lowest-energy orbitals are filled first, followed ... electron configuration The arrangement of electrons in an atom, molecule, or other ... and two valence electrons (electrons in the outer shell), respectively; because of this, ... mechanics, a certain energy is associated with each electron configuration.
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724