For the purpose we will here use t<span>he ideal gas law:
p</span>×V=n×R×<span>T
V= </span><span>5.0 L
T= </span><span>373K
p= </span><span>203kPa
</span><span>
R is </span> universal gas constant, and its value is 8.314 J/mol×<span>K
</span>
Now when we have all necessary date we can calculate the number of moles:
n=p×V/R×T
n= 203 x 5 / 8.314 x 373 = 0.33 mole
Answer:
Atoms.
They come together so they can form molecules (because of their electrons)
It becomes a covalent bond
Explanation:
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1