1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
11

The normal boiling point of a liquid is 282 °C. At what temperature (in

Chemistry
1 answer:
ElenaW [278]3 years ago
5 0

Answer:

The temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C

Explanation:

Here we make use of the Clausius-Clapeyron equation;

ln\left (\frac{p_{2}}{p_{1}}  \right )=-\frac{\Delta H_{vap}}{R}\cdot \left (\frac{1}{T_{2}}-\frac{1}{T_{1}}  \right )

Where:

P₁ = 1 atm =The substance vapor pressure at temperature T₁ = 282°C = 555.15 K

P₂ = 0.2 atm = The substance vapor pressure at temperature T₂

\Delta H_{vap} = The heat of vaporization = 28.5 kJ/mol

R = The universal gas constant = 8.314 J/K·mol

Plugging in the above values in the Clausius-Clapeyron equation, we have;

ln\left (\frac{0.2}{1}  \right )=-\frac{28.5 \times 10^3}{8.3145}\cdot \left (\frac{1}{T_{2}}-\frac{1}{555.15}  \right )

\therefore T_2 = \frac{-3427.95}{ln(0.2)-6.175}

T₂ = 440.37 K

To convert to Celsius degree temperature, we subtract 273.15 as follows

T₂ in °C = 440.37 - 273.15 = 167.22 °C

Therefore, the temperature at which the liquid vapor pressure will be 0.2 atm = 167.22 °C.

You might be interested in
The Ottoman Empire was dissolved following World War I. Which modern nation came out of that empire?
kati45 [8]
The answer would be Turkey
7 0
3 years ago
Read 2 more answers
Which of the following is a characteristic of alcohols
liq [111]
You forgot to add pictures ..
3 0
3 years ago
One reaction involved in the conversion of iron ore to the metal is FeO(s) + CO(g) → Fe(s) + CO2(g) Use Hess’s Law to calculate
Ugo [173]

Answer:

\delta H_{rxn} = -66.0  \ kJ/mole

Explanation:

Given that:

3FeO_3_{(s)}+CO_{(g)} \to 2Fe_3O_4_{(s)} +CO_{2(g)} \  \ \delta H = -47.0 \ kJ/mole  -- equation (1)  \\ \\ \\ Fe_2O_3_{(s)} +3CO_{(g)} \to 2FE_{(s)} + 3CO_{2(g)}  \ \ \delta H = -25.0 \ kJ/mole  -- equation (2)  \\ \\ \\ Fe_3O_4_{(s)} + CO_{(g)} \to 3FeO_{(s)} + CO_{2(g)} \ \delta H = 19.0 \ kJ/mole  -- equation (3)

From equation (3) , multiplying (-1) with equation (3) and interchanging reactant with the product side; we have:

3FeO_{(s)} + CO_{2(g)}    \to    Fe_3O_4_{(s)} + CO_{(g)}   \ \delta H = -19.0 \ kJ/mole  -- equation (4)

Multiplying  (2) with equation (4) ; we have:

6FeO_{(s)} + 2CO_{2(g)}    \to    2Fe_3O_4_{(s)} + 2CO_{(g)}   \ \delta H = -38.0 \ kJ/mole  -- equation (5)

From equation (1) ; multiplying (-1) with equation (1); we have:

2Fe_3O_4_{(s)} +CO_{2(g)} \to     3FeO_3_{(s)}+CO_{(g)}   \  \ \delta H = 47.0 \ kJ/mole  -- equation (6)

From equation (2); multiplying (3) with equation (2); we have:

3 Fe_2O_3_{(s)} +9CO_{(g)} \to 6FE_{(s)} + 9CO_{2(g)}  \ \ \delta H = -75.0 \ kJ/mole  -- equation (7)

Now; Adding up equation (5), (6) & (7) ; we get:

6FeO_{(s)} + 2CO_{2(g)}    \to    2Fe_3O_4_{(s)} + 2CO_{(g)}   \ \delta H = -38.0 \ kJ/mole  -- equation (5)

2Fe_3O_4_{(s)} +CO_{2(g)} \to     3FeO_3_{(s)}+CO_{(g)}   \  \ \delta H = 47.0 \ kJ/mole  -- equation (6)

3 Fe_2O_3_{(s)} +9CO_{(g)} \to 6FE_{(s)} + 9CO_{2(g)}  \ \ \delta H = -75.0 \ kJ/mole  -- equation (7)

<u>                                                                                                                      </u>

FeO  \ \ \ +  \ \ \ CO   \ \  \to   \ \ \ \ Fe_{(s)} + \ \ CO_{2(g)} \ \ \  \delta H = - 66.0 \ kJ/mole

<u>                                                                                                                     </u>

<u />

\delta H_{rxn} = \delta H_1 +  \delta H_2 +  \delta H_3    (According to Hess Law)

\delta H_{rxn} = (-38.0 +  47.0 + (-75.0)) \ kJ/mole

\delta H_{rxn} = -66.0  \ kJ/mole

8 0
3 years ago
Use the Bohr Model below to answer the questions:
Bas_tet [7]

Answer:

Ca(Calcium)

20 electrons

2 valence electrons

4

Explanation:

3 0
2 years ago
Part A The first step to engineering is to define the problem. Write down the problem the students have to solve, and describe t
Elena L [17]

Answer:

Engineering is all about solving problems using math, science, and technical knowledge. And engineers have solved a lot of problems in the world by designing and building various technologies. We have everything from machines that can breathe for you in hospitals to suspension bridges to computers we use every day. All of these things were once designed by engineers using the engineering design process.

Explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • Answer fast! All transition metals have _______ valence electrons.
    10·1 answer
  • The density of water at 40°C is 0.992 g/mL. What is the volume of 2.69 g of water at this temperature? V= mL​
    9·1 answer
  • You have a 2 Liter solution that contains 1 mole of NaCI. What is the molarity of the solution?
    15·1 answer
  • Calculate the volume in milliliters of a 2.09 M silver nitrate solution that contains 400 g of silver nitrate AgNO3. Round your
    5·2 answers
  • PLS HELP I GIVE BRANLIEST !!!
    7·1 answer
  • What happens when the kinetic energy of molecules increases so much that electrons are released by the atoms, creating a swirlin
    11·2 answers
  • Which part of the atom is involved in bonding?
    15·1 answer
  • Jay and Jeff were responsible for recording the class weather data each day in march. What weather instrument, seen here, should
    14·1 answer
  • What is the Lewis dot diagram of ca and br?
    8·1 answer
  • How many significant figures are in the measurement 12.4 kg
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!