Answer:

Explanation:

The law of gravitation

Universal gravitational constant [S.I. units]

Mass of Earth [S.I. units]

Mass of a man in a spacecraft [S.I. units]

Earth radius [km]
Distance between man and the earth's surface
![h=261 \mathrm{~km} \quad[\mathrm{~km}]](https://tex.z-dn.net/?f=h%3D261%20%5Cmathrm%7B~km%7D%20%5Cquad%5B%5Cmathrm%7B~km%7D%5D)
ESULT 

You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
Vectors are used to represent physical magnitudes that have an associated address. For example, if we want to represent the displacement of an object, it is not enough to describe only the distance as 10 meters, it is also necessary to describe in which direction the displacement occurred, for example, 30 ° towards the northeast.
Therefore the vectors are measured in one or several dimensions that include a magnitude and an address.
The correct option is the last:
"<em>a measurement in more than one dimension that includes a magnitude and a direction</em>"
I would say the last option, since with an increase in temperature, water molecules will speed up.
We know that a=vf_vi/t equals equation "a" . Where a is the acceleration of the body , vf is the final velocity , vi is the initial velocity and t is equal to time . Since vi equals o m/s , vf equals to 60 m/s and t equals 10 s. Put in equation "a". a=60-0/10 =6m/s2