Consider the boundary-value problem introduced in the construction of the mathematical model for the shape of a rotating string:
T d2y dx2 + rhoω2y = 0, y(0) = 0, y(L) = 0. For constants T and rho, define the critical speeds of angular rotation ωn as the values of ω for which the boundary-value problem has nontrivial solutions. Find the critical speeds ωn and the corresponding deflections yn(x). (Give your answers in terms of n, making sure that each value of n corresponds to a unique critical speed.)