Angular velocity of the rotating tires can be calculated using the formula,
v=ω×r
Here, v is the velocity of the tires = 32 m/s
r is the radius of the tires= 0.42 m
ω is the angular velocity
Substituting the values we get,
32=ω×0.42
ω= 32/0.42 = 76.19 rad/s
= 76.19×
revolution per min
=728 rpm
Angular velocity of the rotating tires is 76.19 rad/s or 728 rpm.
Answer: When enough __energy__ is added to the substance, the solid reaches its _melting_ point and becomes a liquid
Explanation: since energy is being added the substance changes phase into a liquid .
Answer:
T = 764.41 N
Explanation:
In this case the tension of the string is determined by the centripetal force. The formula to calculate the centripetal force is given by:
(1)
m: mass object = 2.3 kg
r: radius of the circular orbit = 0.034 m
v: tangential speed of the object
However, it is necessary to calculate the velocity v first. To find v you use the formula for the kinetic energy:

You have the value of the kinetic energy (13.0 J), then, you replace the values of K and m, and solve for v^2:

you replace this value of v in the equation (1). Also, you replace the values of r and m:

hence, the tension in the string must be T = Fc = 764.41 N
Answer:
D. provide the most compelling evidence of cause-and-effect relationships.
Explanation:
Answer:
Sediments can be carried from one place to another. The movement of sediments by wind, water, ice, or gravity is called erosion.