Answer:
N = 6.67 N
Explanation:
The frictional or frictional force is a force that arises from the contact of two bodies and opposes movement.
The friction is due to imperfections and roughness, mainly microscopic, that exist on the surfaces of the bodies. Upon contact, these roughnesses engage with each other making movement difficult. To minimize the effect of friction, either the surfaces are polished or lubricated, since the oil fills the imperfections, preventing them from snagging.
As the frictional force depends on the materials and the force exerted on one another, its magnitude is obtained by the following expression:
f = μ*N Formula (1)
where:
f is the friction force (N)
μ is the coefficient of friction
N is the normal force (N)
Data
f = 0.2 N : frictional force between the steel spatula and the Oiled Steel frying pan
μ = 0.03 :coefficient of kinetic friction between the two materials
Calculating of normal force
We replace data in the formula (1)
f = μ*N
0.2 = 0.03*N
N = 0.2 / 0.03
N = 6.67 N
Answer:
<h3>2,321.62Joules</h3>
Explanation:
The formula for calculating workdone is expressed as;
Workdone = Force * Distance
Get the force
F = nR
n is the coefficient of friction = 0.5
R is the reaction = mg
R = 46 ( 9.8)
R = 450.8N
F = 0.5 * 450.8
F = 225.4N
Distance = 10.3m
Get the workdone
Workdone = 225.4 * 10.3
Workdone = 2,321.62Joules
<em>Hence the amount of work done is 2,321.62Joules</em>
Zero maximum force (N) or field strength (N/C). ... minimum /maximum field strength.
It is possible for on object to be going at 100 miles per hour, but still have a velocity. This is because the object going at 100 miles per hour has speed, which is a scalar quantity, which is defined by only magnitude, but the velocity of the object can be 0, since velocity is a vector quantity which is defined by both magnitude and direction.
Since this object only has magnitude and no direction (which is not given), then the velocity can be 0
Complete Question
The complete question is shown on the first uploaded image
Answer:
The <u>Fruit juice </u> should be put in the cooler, because <u>it has the greatest heat capacity</u> and will therefore, <u>absorb the most heat for each degree it increases in temperature.</u>
Explanation:
in order to understand the answer above we need to know what specific heat capacity is
Specific heat capacity can be defined as the amount of heat required to raise the temperature of a unit mass of a substance by one degree
Looking at the specific heat of each substance suggested we see that the fruit juice has a higher specific heat capacity than others this is because it contains a higher amount of water , generally liquid states of substances have a higher specific heat capacity than other states. The specific heat capacity of fruit juice being the highest among the suggested substances means that it can absorb more heat for each degree temperature of refrigerator.