Answer:
My answer im guessing is "d"
Explanation:
Answer:
Mass of Oxygen = 32 grams
Explanation:
Given:
Mass of water = 36 grams
Mass of Hydrogen = 4 grams
Find:
Mass of Oxygen
Computation:
Using Law of Conservation of mass
Mass of water = Mass of Hydrogen + Mass of Oxygen
36 grams = 4 grams + Mass of Oxygen
Mass of Oxygen = 32 grams
Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
Answer:
50000ppm and 0.855M.
Explanation:
ppm is an unit of chemistry defined as the ratio between mg of solute (NaCl) and Liters of solution. Molarity, M, is the ratio between moles of NaCl and liters
A 5% (w/v) NaCl contains 5g of NaCl in 100mL of solution.
To solve the ppm of this solution we need to find the mg of NaCl and the L of solution:
<em>mg NaCl:</em>
5g * (1000mg / 1g) = 5000mg
<em>L Solution:</em>
100mL * (1L / 1000mL) = 0.100L
ppm:
5000mg / 0.100L = 50000ppm
To find molarity we need to obtain the moles of NaCl in 5g using its molar mass:
5g * (1mol / 58.5g) = 0.0855moles NaCl
Molarity:
0.0855mol NaCl / 0.100L = 0.855M
Answer: 70.0°C
Explanation:
Quantity of heat = Mass * Specific heat * Change in temperature
Quantity of heat = 104.6 KJ
Mass = 500.0 g
Specific heat of water is 4.18 J/g°C
Change in temperature assuming final temperature is x = x - 20
Units should be in grams and joules:
104,600 = 500 * 4.18 * (x - 20)
104,600 = 2,090 * (x - 20)
x - 20 = 104,600/2,090
x = 104,600/2,090 + 20
x = 69.8
= 70.0°C