Answer: Because it's a combination of chemicals, vodka doesn't freeze at the same temperature as either water or alcohol. Of course, vodka will freeze, but not at the temperature of an ordinary freezer. This is because vodka contains enough alcohol to lower the freezing point of water below the -17°C of your typical freezer.
Explanation: .......
<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>
Answer:
4 1/2
Explanation:
Use a ratio to find your answer
4 6
----- = -------
3 x
Cross multiply to solve for x.
4x = 18
x = 18/4
x = 4 2/4 which is the same as 4 1/2
Answer:
The new temperature of the nitrogen gas is 516.8 K or 243.8 C.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
You want to study two different states, an initial state and a final state. You have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment. By varying the temperature to a new value T2, then the pressure will change to P2, and the following will be fulfilled:

In this case:
- P1= 2 atm
- T1= 50 C= 323 K (being 0 C= 273 K)
- P2= 3.2 atm
- T2= ?
Replacing:

Solving:


T2= 516.8 K= 243.8 C
<u><em>The new temperature of the nitrogen gas is 516.8 K or 243.8 C.</em></u>
The rate of chemical reactions generally happen <em>faster</em> when the temperature is raised.
This happens because the reactant's molecules move faster when the temperature is raised. The molecules start to bounce around more, increasing the chance for the reaction to happen, or to increase the speed at which the reaction occurs. Hope this helped.