Answer:
- 1100 J heat flows out
Explanation:
dW = - 1600 J (as work is done on the gas)
dU = 500 J
dQ = ?
According to the first law of thermodynamics
dQ = dU + dW
dQ = 500 - 1600
dQ = - 1100 J
As heat is negative so it flows out.
The resistance of the lamp is apparently 50V/2A = 25 ohms.
When the circuit is fed with more than 50V, we want to add
another resistor in series with the 25-ohm lamp so that the
current through the combination will be 2A.
In order for 200V to cause 2A of current, the total resistance
must be 200V/2A = 100 ohms.
The lamp provides 25 ohms, so we want to add another 75 ohms
in series with the lamp. Then the total resistance of the circuit is
(75 + 25) = 100 ohms, and the current is 200V/100 ohms = 2 Amps.
The power delivered by the 200V mains is (200V) x (2A) = 400 watts.
The lamp dissipates ( I² · R ) = (2² · 25 ohms) = 100 watts.
The extra resistor dissipates ( I² · R) = (2² · 75 ohms) = 300 watts.
Together, they add up to the 400 watts delivered by the mains.
CAUTION:
300 watts is an awful lot of power for a resistor to dissipate !
Those little striped jobbies can't do it.
It has to be a special 'power resistor'.
300 watts is even an unusually big power resistor.
If this story actually happened, it would be cheaper, easier,
and safer to get three more of the same kind of lamp, and
connect THOSE in series for 100 ohms. Then at least the
power would all be going to provide some light, and not just
wasted to heat the room with a big moose resistor that's too
hot to touch.
Saying no and not throwing fits and manners.
A process with a negative change in enthalpy and a negative change in entropy will generally be: <u>spontaneous</u>.
<h3>Gibbs free energy:</h3>
Since the Gibbs free energy is a parameter that tells us whether a chemical reaction is spontaneous (Gibbs free energy less than 0) or nonspontaneous (Gibbs free energy greater than 0) in this situation, we can describe it mathematically as:
ΔG = ΔH - TΔS
Therefore, any process with a negative change in enthalpy and a positive change in entropy will be spontaneous. If the enthalpy and the entropy are both negative, the subtraction becomes always negative, for which the Gibbs free energy is also negative.
One of the most crucial thermodynamic functions for the characterization of a system is the Gibbs free energy. It influences results like the voltage of an electrochemical cell and the equilibrium constant for a reversible reaction, among others.
Learn more about spontaneous here:
brainly.com/question/16975806
#SPJ4
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.