Answer:
The charge is moving with the velocity of .
Explanation:
Given that,
Charge
Angle = 35°
Magnetic field strength
Magnetic force
We need to calculate the velocity.
The Lorentz force exerted by the magnetic field on a moving charge.
The magnetic force is defined as:
Where,
F = Magnetic force
q = charge
B = Magnetic field strength
v = velocity
Put the value into the formula
Hence, The charge is moving with the velocity of .
Answer:
ik u got it bc this was 2 weeks ago
Explanation:
but yes and yuea
Answer:
Rate at which current flows is measured in amperes
Explanation:
The rate of flow of electrons constitutes the current. The electrons flow from lower electric potential to higher electric potential. When there is no potential difference then no electron will flow. The direction of the current and the electron are in opposite direction.
The direction of electron from the negative terminal to the positive terminal. The direction of current is from the positive terminal to the negative terminal.The current is measured in ampere.
The expression for current and the charge is as;
Here, q is the charge, t is the time taken and I is the current.
According to the given problem, Jodi made a list about electric current to help her study for a test. He described that electrons move from areas of low to high electric potential, voltage causes current to flow and movement of electrons is continuous in a current.
But he did error. It should be "rate at which charges flow" instead of rate at which current flow.
Therefore, the option (4) is correct.
Hello,
The answer is option B KE=1/2mv^2.
Reason:
In order to calculate the kinetic energy of a object you need to use option B which is the correct formula to find the kinetic energy.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
The sketch of the system is: two strings, 1 and 2, are attached to the ceiling and to a third string, 3.The third string holds the bag of cement.
The free body diagram of the weight with the string 3, drives to the tension T3 = weihgt => T3 = 325 N
The other free body diagram is around the joint of the three strings.
In this case, you can do the horizontal forces equilibrium equation as:
T1* cos(60) - T2*cos(40) = 0
And the vertical forces equilibrium equation:
Ti sin(60) + T2 sin(40) = T3 = 325 N
Then you have two equations with two unknown variables, T1 and T2
0.5 T1 - 0.766 T2 = 0
0.866 T1 + 0.643T2 = 325
When you solve it you get, T1 = 252.8 N and T2 = 165 N
Answer: T1 = 252.8 N, T2 = 165N, and T3 = 325N