Answer:
, downward
Explanation:
There is only one force acting on the ball during its motion: the force of gravity, which is given by

where
m is the mass of the ball
is the acceleration of gravity (downward)
According to Newton's second law,

where F is the net force on the object and a is its acceleration. Rearranging for a,

As we said, the only force acting on the ball is gravity, so F = mg and the acceleration of the ball is:

Therefore, the ball has a constant acceleration of
downward for the entire motion.
Answer:
D
Explanation:
The gravity is pushing the water downward so Wayne could go down but the water is pushing Wayne to go up which would make him float.
Answer:
velocity = 472 m/s
velocity = 52.4 m/s
Explanation:
given data
steady rate = 0.750 m³/s
diameter = 4.50 cm
solution
we use here flow rate formula that is
flow rate = Area × velocity .............1
0.750 =
× (4.50×
)² × velocity
solve it we get
velocity = 472 m/s
and
when it 3 time diameter
put valuer in equation 1
0.750 =
× 3 × (4.50×
)² × velocity
velocity = 52.4 m/s
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.