-- Electric field lines DO never cross. <em>(A)
</em>
-- Electric field lines that are close together DO indicate a stronger electric field. <em>(B)
</em>
-- Electric field lines DO not affect the charge that created them. <em>(C)</em>
-- Electric field lines DON'T begin on north poles and end on south poles. North and South "poles" are the way we talk about magnets, not electric charges.
Answer:
Cannot be determined from the given information
Explanation:
Given the following data;
Velocity = 24 m/s
Period = 3 seconds
To find the amplitude of the wave;
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.
However, the given parameters can be used to calculate the frequency and wavelength of the wave.
Answer:
Stationary Front, warm front, cold front, Occluded Front.
Explanation:
Stationary Front. When the surface position of a front does not change (when two air masses are unable to push against each other; a draw), a stationary front is formed.
cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone (to the west in the Northern Hemisphere, to the east in the Southern), at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (86 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and weakest during the summer.
A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall gradually increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.
In meteorology, an occluded front is a weather front formed during the process of cyclogenesis. The classical view of an occluded front is that they are formed when a cold front overtakes a warm front, such that the warm air is separated (occluded) from the cyclone center at the surface. The point where the warm front becomes the occluded front is called the triple point; a new area of low-pressure that develops at this point is called a triple-point low. A more modern view of the formation process suggests that occluded fronts form directly during the wrap-up of the baroclinic zone during cyclogenesis, and then lengthen due to flow deformation and rotation around the cyclone.
And.. where is the rest of the question?
The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295