1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
5

Two kilograms of air within a piston–cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 80

0 K and 295 K, respectively. The heat transfer to the air during the isothermal expansion is 60 kJ. At the end of the isothermal expansion the volume is 0.4 m3. Assume the ideal gas model for the air. Determine the thermal efficiency, the volume at the beginning of the isothermal expansion, in m3, and the work during the adiabatic expansion, in kJ.

Engineering
2 answers:
Alekssandra [29.7K]3 years ago
6 0

Answer:

a.) Thermal efficiency = 0.37

b.) Volume = 0.229 m^3

c.) Work done = 1393.3 kJ

Explanation: Please find the attached files for the solution

creativ13 [48]3 years ago
6 0

Answer:

thermal efficiency, η=  0.63125

volume at the beginning of the isothermal expansion, V1 = 0.34011 m3

work during the adiabatic expansion, in kJ = 766.59 KJ

Explanation:

<u>To determine the thermal efficiency</u>

The thermal efficiency of a heat engine gives an estimation of the amount of heat energy converted to work in the engine.

Thermal efficiency is given by: η= 1-  (Tc/Th)

where, Tc= ambient temperature or the minimum temperature

            Th=  maximum temperature

from the given data:

minimum temperature = 295 K

maximum temperature =  800 K

η= 1-  (295/800)

η=  0.63125

<u>To determine the volume at the beginning of the isothermal expansion, in m3</u>

We know,  ΔU = Q − W.

where,  ΔU is the change in internal energy of the system.

Q= mRT In (V2/V1)

Where, V1 = volume at the beginning of the isothermal expansion

             V2 = = volume at the end of the isothermal expansion

Therefore, V1 = V2 / (Q/mRT)

V1= 0.4/ ((60000/ (2 x 287 x 800))

V1 = 0.34011 m3

where, isothermal expansion given is 60 kJ

             isothermal expansion the volume given is 0.4 m3

<u>To determine the work during the adiabatic expansion, in kJ.</u>

Work during the adiabatic process is given by

W = − ΔU

where,  ΔU is the change in internal energy of the system

W at the first and second process = - 2 x 759 ( 295 - 800)

= 766590J = 766.59 KJ

You might be interested in
Energy.
alexandr402 [8]

Answer:

modern vehicles are made to crunch up a little bit so they that absorbe some of the impact instead of you

Explanation:

8 0
3 years ago
Design a sequential circuit DETECTOR that has one input X and one input Y. The DETECTOR detects the sequence 110. If an input X
Novosadov [1.4K]

Answer:

See explaination

Explanation:

This is going to require diagrams, please kindly see attachment for the detailed step by step solution of the given problem.

5 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
Engine oil flows through a 25‐mm‐diameter tube at a rate of 0.5 kg/s. The oil enters the tube at a temperature of 25°C, while th
Elodia [21]

Answer:

a) the log mean temperature difference (Approx. 64.5 deg C)

b) the rate of heat addition into the oil.

The above have been solved for in the below workings

Explanation:

3 0
4 years ago
Part B Now push the plate down and observe what happens on the shore. Repeat the action three to four more times, and watch the
wolverine [178]

Answer:

A tsunami's trough, the low point beneath the wave's crest, often reaches shore first. When it does, it produces a vacuum effect that sucks coastal water seaward and exposes harbor and sea floors. As the tsunami approaches water is drawn back from the beach to effectively help feed the wave. In a tide the wave is so long that this happens slowly, over a few hours.

Explanation:

4 0
3 years ago
Other questions:
  • Consider a Mach 4.5 airflow at a pressure of 1.25 atm. We want to slow this flow to a subsonic speed through a system of shock w
    15·1 answer
  • Annie has collected several items from around her house. She is using these objects to investigate which objects are attracted t
    12·1 answer
  • What is the linear distance traveled in one revolution of a 36-inch wheel
    6·1 answer
  • What is the maximum volume flow rate, in m^3/hr, of water at 15.6°C a 10-cm diameter pipe can carry such that the flow will be l
    9·1 answer
  • Design a plate and frame heat exchanger for the following problem:
    10·1 answer
  • A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (includ
    13·1 answer
  • Which type of Bridge is considered the strongest in both compression and tension?
    11·2 answers
  • How to solve circuit theory using mesh analysis<br>​
    11·1 answer
  • Which of the eight diagnostic steps for locating an engine performance problem is performed first?
    10·1 answer
  • Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!