1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
5

Two kilograms of air within a piston–cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 80

0 K and 295 K, respectively. The heat transfer to the air during the isothermal expansion is 60 kJ. At the end of the isothermal expansion the volume is 0.4 m3. Assume the ideal gas model for the air. Determine the thermal efficiency, the volume at the beginning of the isothermal expansion, in m3, and the work during the adiabatic expansion, in kJ.

Engineering
2 answers:
Alekssandra [29.7K]3 years ago
6 0

Answer:

a.) Thermal efficiency = 0.37

b.) Volume = 0.229 m^3

c.) Work done = 1393.3 kJ

Explanation: Please find the attached files for the solution

creativ13 [48]3 years ago
6 0

Answer:

thermal efficiency, η=  0.63125

volume at the beginning of the isothermal expansion, V1 = 0.34011 m3

work during the adiabatic expansion, in kJ = 766.59 KJ

Explanation:

<u>To determine the thermal efficiency</u>

The thermal efficiency of a heat engine gives an estimation of the amount of heat energy converted to work in the engine.

Thermal efficiency is given by: η= 1-  (Tc/Th)

where, Tc= ambient temperature or the minimum temperature

            Th=  maximum temperature

from the given data:

minimum temperature = 295 K

maximum temperature =  800 K

η= 1-  (295/800)

η=  0.63125

<u>To determine the volume at the beginning of the isothermal expansion, in m3</u>

We know,  ΔU = Q − W.

where,  ΔU is the change in internal energy of the system.

Q= mRT In (V2/V1)

Where, V1 = volume at the beginning of the isothermal expansion

             V2 = = volume at the end of the isothermal expansion

Therefore, V1 = V2 / (Q/mRT)

V1= 0.4/ ((60000/ (2 x 287 x 800))

V1 = 0.34011 m3

where, isothermal expansion given is 60 kJ

             isothermal expansion the volume given is 0.4 m3

<u>To determine the work during the adiabatic expansion, in kJ.</u>

Work during the adiabatic process is given by

W = − ΔU

where,  ΔU is the change in internal energy of the system

W at the first and second process = - 2 x 759 ( 295 - 800)

= 766590J = 766.59 KJ

You might be interested in
Suppose that the president of a small island nation has decided to increase government spending by constructing three beach reso
Mila [183]

Answer:

Option E

The planning and construction of the resorts represent an impact lag of this policy.

Explanation:

Whereas the legislation was enacted without any delay but planning takes six months and construction taking 2 months, it means the policy has a lag. Therefore, option E, the planning and construction of the resorts represent an impact lag of this policy.

3 0
3 years ago
The crash rate per mile is.
Colt1911 [192]

Answer:

75 percent

Explanation:

8 0
3 years ago
What is code in Arduino to turn led on and off
11Alexandr11 [23.1K]

here's your answer..

4 0
3 years ago
Disconnecting a circuit while in operation can create a voltage blank
zlopas [31]

Answer:

what is the question

Explanation:

confused

5 0
3 years ago
A round bar of chromium steel, (ρ= 7833 kg/m, k =48.9 W/m-K, c =0.115 KJ/kg-K, α=3.91 ×10^-6 m^2/s) emerges from a heat treatmen
Lerok [7]

Answer:

Q = 424523.22 kw

Explanation:

\rho =7833 kg/m

k = 48.9 W/m - K

c = 0.115 KJ/kg- K

\alpha = 3.91*10^{-6} m^2/s

T_s = 285 degree celcius

T_∞ = 35 degree celcius

velocity of air stream = 15 m/s

D = 40 cm

L = 200 cm

mass flow rate\dot m = \rho AV = 7833 *\frac{\pi}{4} 0.4^2*15

\dot m = 14764.85 kg/s

A_s = \pi DL = \pi 0.4*2 = 2.513 m^2

Q = \dot m C \Delta T = h A_s \Delta T

\dot m C \Delta T = h A_s \Delta T

solving for h

h = \frac{14764.85*0.115*(285-35)}{2.513*(285-35)}

h = 675.6 kw/m^2K

Q = h A_s\Delta T

Q = 675.6*2.513*(285-35)

Q = 424523.22 kw

7 0
2 years ago
Other questions:
  • Rolling and Shearing are the types of a)-Bulk Deformation Process b)- Sheet Metal Process c)- Machining Process d)- Both a &amp;
    7·1 answer
  • Advances in vehicle manufacturing technology have decreased the need for:
    10·1 answer
  • A closed, rigid, 0.45 m^3 tank is filled with 12 kg of water. The initial pressure is p1 = 20 bar. The water is cooled until the
    15·1 answer
  • Summarize three attributes that are important for an engineer to possess.
    13·1 answer
  • Why would Chris most likely conclude that he should seek help? A. He feels in control of his emotions even though people annoy h
    15·2 answers
  • How to find magnitude of forces
    8·1 answer
  • You rent an apartment that costs $1800 per month during the first year, but the rent is set to go up 11,5% per year. What would
    12·1 answer
  • What are the four types of physical hazards?
    13·2 answers
  • A wing generates a lift L when moving through sea-level air with a velocity U. How fast must the wing move through the air at an
    7·1 answer
  • An ideal Diesel Cycle has a compression ratio of 18 and a cutoff ratio of 1.5. Determine the maximum air temperature and the rat
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!