1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
patriot [66]
3 years ago
5

Two kilograms of air within a piston–cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 80

0 K and 295 K, respectively. The heat transfer to the air during the isothermal expansion is 60 kJ. At the end of the isothermal expansion the volume is 0.4 m3. Assume the ideal gas model for the air. Determine the thermal efficiency, the volume at the beginning of the isothermal expansion, in m3, and the work during the adiabatic expansion, in kJ.

Engineering
2 answers:
Alekssandra [29.7K]3 years ago
6 0

Answer:

a.) Thermal efficiency = 0.37

b.) Volume = 0.229 m^3

c.) Work done = 1393.3 kJ

Explanation: Please find the attached files for the solution

creativ13 [48]3 years ago
6 0

Answer:

thermal efficiency, η=  0.63125

volume at the beginning of the isothermal expansion, V1 = 0.34011 m3

work during the adiabatic expansion, in kJ = 766.59 KJ

Explanation:

<u>To determine the thermal efficiency</u>

The thermal efficiency of a heat engine gives an estimation of the amount of heat energy converted to work in the engine.

Thermal efficiency is given by: η= 1-  (Tc/Th)

where, Tc= ambient temperature or the minimum temperature

            Th=  maximum temperature

from the given data:

minimum temperature = 295 K

maximum temperature =  800 K

η= 1-  (295/800)

η=  0.63125

<u>To determine the volume at the beginning of the isothermal expansion, in m3</u>

We know,  ΔU = Q − W.

where,  ΔU is the change in internal energy of the system.

Q= mRT In (V2/V1)

Where, V1 = volume at the beginning of the isothermal expansion

             V2 = = volume at the end of the isothermal expansion

Therefore, V1 = V2 / (Q/mRT)

V1= 0.4/ ((60000/ (2 x 287 x 800))

V1 = 0.34011 m3

where, isothermal expansion given is 60 kJ

             isothermal expansion the volume given is 0.4 m3

<u>To determine the work during the adiabatic expansion, in kJ.</u>

Work during the adiabatic process is given by

W = − ΔU

where,  ΔU is the change in internal energy of the system

W at the first and second process = - 2 x 759 ( 295 - 800)

= 766590J = 766.59 KJ

You might be interested in
What is the first thing to do when you make a three-point turn?.
Jlenok [28]

Answer:

1. Move as far right as possible, check traffic, and signal a left turn.

2. Turn the steering wheel sharply to the left and move forward slowly.

3. Shift to reverse, turn your wheels sharply to the right, check traffic, and back your vehicle to the right curb, or edge of roadway.

5 0
2 years ago
The Acme threading tool forms an inc luded angle of how many degrees? A. 30 B. 55 C. 29 D. 60
Schach [20]

Answer:

(C) 29°

Explanation:

ACME THREAD ANGLE : it is the angle measured between the thread axis and thread the thread flanks, with the help of thread angle we calculate the shape of screw thread it is the mean of v thread and square thread  the acme thread angle is denoted by β every thread has its own charactersistics which depends on the pitch and diameter of the thread

4 0
3 years ago
Discuss the trends in reaction forces versus jet velocity. Is the trend consistent with the theory? Does it make sense?
Snowcat [4.5K]

Answer:

The rate of fluid motion(Jet Velocity) exert a force on the object in contact with it. This force is also knowns as reactions forces.

In theory, this is related to Newton Second of motion which States that:

The rate of change of momentum is directly proportional to impressed force.

This makes sense and it is consistent with theory. Detailed explanation below:

Explanation:

A jet which can be illustrated as a moving fluid, in natural or artificial systems, may exert forces on objects in contact with it.

To analyze fluid motion, a finite region of the fluid (control volume) is usually selected, and the gross effects of the flow, such as its force or torque on an object, is determined by calculating the net mass rate that flows into and out of the control volume.

These forces can be determined, as in solid mechanics, by the use of Newton’s second law, or by the momentum equation(Consistent with the theory). The force exerted by a jet of fluid on a flat or curve surface can be resolved by applying the momentum equation. The study of these forces is essential to the study of fluid mechanics and hydraulic machinery.

In practice, Engineers and designers use the momentum equation to accurately calculate the force that moving fluid may exert on a solid body. For example, in hydropower plants, turbines are utilized to generate electricity. Turbines rotate due to force exerted by one or more water jets that are directed tangentially onto the turbine’s vanes or buckets. The impact of the water on the vanes generates a torque on the wheel, causing it to rotate and to generate electricity.

3 0
4 years ago
The ???? − i relationship for an electromagnetic system is given by ???? = 1.2i1/2 g where g is the air-gap length. For current
Artemon [7]

Answer:

a) The mechanical force is -226.2 N

b) Using the coenergy the mechanical force is -226.2 N

Explanation:

a) Energy of the system:

\lambda =\frac{1.2*i^{1/2} }{g} \\i=(\frac{\lambda g}{1.2} )^{2}

\frac{\delta w_{f} }{\delta g} =\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }

If i = 2A and g = 10 cm

\lambda =\frac{1.2*i^{1/2} }{g} =\frac{1.2*2^{1/2} }{10x10^{-2} } =16.97

f_{m}=-\frac{g^{2}\lambda ^{3}  }{3*1.2^{2} }=-\frac{16.97^{3}*2*0.1 }{3*1.2^{2} } =-226.2N

b) Using the coenergy of the system:

f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{1.2*2*i^{3/2}  }{3*g^{2} }=-\frac{1.2*2*2^{3/2} }{3*0.1^{2} } =-226.2N

8 0
3 years ago
Chemical engineers determine how to transport chemicals.<br> O True<br> False
Anna35 [415]

Answer:

Chemical Engineers determine how to transport chemicals:

TRUE

6 0
2 years ago
Read 2 more answers
Other questions:
  • A heating cable is embedded in a concrete slab for snow melting. The heating cable is heated electrically with joule heating to
    9·1 answer
  • What software do you sue for design and the rapid prototyping machine?
    11·1 answer
  • List different types of Gears, Explain the fundamental law of Gearing, Explain the Spur Gear Terminology.
    13·1 answer
  • A chemistry student accidentally drops a large mercury thermometer and it breaks. The thermometer contained 2 grams of mercury (
    13·1 answer
  • An ideal Carnot engine extracts of heat from a high-temperature reservoir at 1200 during each cycle, and rejects heat to a low-t
    10·1 answer
  • Take water density and kinematic viscosity as p=1000 kg/m3 and v= 1x10^-6 m^2/s. (c) Water flows through an orifice plate with a
    13·1 answer
  • The pilot of an airplane reads the altitude 6400 m and the absolute pressure 45 kPa when flying over the city. Calculate the loc
    10·1 answer
  • VICTV
    11·2 answers
  • A Jackhammer uses pressurized gas to transmit force to the hammer bit. What type of mechanical system is it?
    12·1 answer
  • How to find density ? because the answer 764.526kg/m^3
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!