Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
The answer is:
d) the sound originates from a vibration.
The explanation:
The sound waves are generated by a sound source, such as the vibrating diaphragm of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the speed of sound, thus forming the sound wave.
Answer:
Explanation:
The charges will repel each other and go away with increasing velocity , their kinetic energy coming from their potential energy .
Their potential energy at distance d
= kq₁q₂ / d
= 9 x 10⁹ x 36 x 10⁻¹² / 2 x 10⁻² J
= 16.2 J
Their total kinetic energy will be equal to this potential energy.
2 x 1/2 x mv² = 16.2
= 3 x 10⁻⁶ v² = 16.2
v = 5.4 x 10⁶
v = 2.32 x 10³ m/s
When masses are different , total P.E, will be divided between them as follows
K E of 3 μ = (16.2 / 30+3) x 30
= 14.73 J
1/2 X 3 X 10⁻⁶ v₁² = 14.73
v₁ = 3.13 x 10³
K E of 30 μ = (16.2 / 30+3) x 3
= 1.47 J
1/2 x 30 x 10⁻⁶ x v₂² = 1.47
v₂ = .313 x 10³ m/s
Answer:
The group of light rays is reflected back towards the focal point thereby producing a magnifying effect.
Explanation:
A very small source of light that radiates uniformly in all directions produces an electric field with an amplitude of ܧ at a distance R from the source. What is the amplitude of the magnetic field at a point 2R from the source?
If the distance from the source is doubled. The amplitude of the magnetic field is smaller 4 times.