The period of the oscillations.T = 1.2042s
Opposition is the process of any quantity or measure fluctuating repeatedly about its equilibrium value throughout time. This process is referred to as oscillation. Oscillation, a periodic fluctuation of a substance, can also be described as alternating between two values or rotating around a central value.
Typically, the mathematical formula for the moment of inertia is
T = 2 π √(I / mgd)
Therefore, a moment of inertia
I = 9.00×10-3 + md^2 ;
I=9.00*10^{-3}+ 0.5 * 0.3^2
I=0.054
T=2
T=1.2042s
The period of the oscillations.T = 1.2042s
Read more about the period of the oscillations. brainly.com/question/14394641
#SPJ1
Answer:
Zero
Explanation:
here, the inductive reactance and the capacitive reactance is same, so this is the condition for resonance.
In the condition for resonance,
the circuit and the voltage in the circuit is in the same phase and the impedance of the circuit is minimum which is equal to the resistance of the circuit.
The phase angle is given by

Ф = 0
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).