Hi just a reminder don’t click the links, and 11.0 is correct
Answer:
they are not liquids at room temperature, so your answer is the last one
Explanation:
Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation
HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
A baseline for experimental investigation is provided by an hypothesis. This is a must before conducting experiments. Also, it is the hypothesis that is being proved by doing the experiments. So, hypothesis is very important in research studies. Hope this answers the question.