For changing potential energy; When you drop a book, gravitational potential energy is transformed into kinetic energy. Your car transforms the chemical potential energy stored in gasoline into the kinetic energy of the car's motion.
For Kinetic Energy; kinetic energy can be converted into electrical energy by a generator or into thermal energy by the brakes on a car.
Answer:
20 L of Cl₂
Solution:
The reaction is as follow,
H₂C₂ + 2 Cl₂ → H₂C₂Cl₄
According to equation,
167.84 g (1 mole) H₂C₂Cl₄ is produced by = 44.8 L (2 mole) of Cl₂
So,
75 g of H₂C₂Cl₄ will be produced by = X L of Cl₂
Solving for X,
X = (44.8 L × 75 g) ÷ 167.84 g
X = 20 L of Cl₂
Answer:
8.73
Explanation:
when you are adding or subtracting numbers, the sigfig (significant figure) is based on how many numbers after the decimal. with this info, we can see that 15.67 has 2 sigfigs and 6.943 has 3 sigfigs. when you subtract normally, you would get 8.727, which has 3 sigfigs, so you would round the last 7 up to get 8.73 with 2 sigfigs!
also it is to 2 sigfigs because we know that we go by the least number of sigfigs. hope this helped!
The Promotion of Equality and Prevention of Unfair Discrimination Act, (PEPUDA or Equality Act, 4 of 2000
Explanation:
Xenophobia is known as the dislike for the people from other countries.
the law, prevents and prohibits discrimination and harrasment
Answer:
The correct answer is B. It is spontaneous only at low temperatures.
Explanation:
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure.
The spontaneity of a reaction is given by the equation:
ΔG = ΔH - TΔS
where:
ΔH: enthalpy variation
T: absolute temperature
ΔS: entropy variation
As the reaction is exothermic, ΔH<0
As the reaction order increases (the reagents are solid and gas and their product is solid), ΔS<0
Therefore, the reaction will be spontaneous when ΔG is negative.
ΔG = ΔH - TΔS
That is, the entropy term must be smaller than the enthalpy term.
Hence, the reaction will be spontaneous only at low temperatures.