For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Answer:
B: False
Explanation:
The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.
Thus, it means that the entropy change will always be positive.
Therefore, the given statement in the question is false.
Answer:
Energy density will be 14.73 
Explanation:
We have given capacitance 
Potential difference between the plates = 365 V
Plate separation d = 0.200 mm 
We know that there is relation between electric field and potential
, here E is electric field, V is potential and d is separation between the plates
So 
Energy density is given by
Answer:
Open- closed
Explanation:
It has Open-closed configuration of its end
Answer:
The distance will be x = 41.7 [m]
Explanation:
We must first find the components in the x & y axes of the initial velocity.
![(v_{o})_{x} = 15*cos(20)= 14.09[m/s]\\(v_{o})_{y} = 15*sin(20)= 5.13[m/s]](https://tex.z-dn.net/?f=%28v_%7Bo%7D%29_%7Bx%7D%20%3D%2015%2Acos%2820%29%3D%2014.09%5Bm%2Fs%5D%5C%5C%28v_%7Bo%7D%29_%7By%7D%20%3D%2015%2Asin%2820%29%3D%205.13%5Bm%2Fs%5D)
The acceleration is the gravity acceleration therefore.
g = 9.81 [m/s^2]
Now we can calculate how long it takes to fall.
![y=(v_{o})_{y}*t-0.5*g*t^2\\-28 = 5.13*t-0.5*9.81*t^2\\-28=-4.905*t^2+5.13*t\\4.905*t^2-5.13*t=28\\t = 2.96[s]](https://tex.z-dn.net/?f=y%3D%28v_%7Bo%7D%29_%7By%7D%2At-0.5%2Ag%2At%5E2%5C%5C-28%20%3D%205.13%2At-0.5%2A9.81%2At%5E2%5C%5C-28%3D-4.905%2At%5E2%2B5.13%2At%5C%5C4.905%2At%5E2-5.13%2At%3D28%5C%5Ct%20%3D%202.96%5Bs%5D)
With this time we can find the horizontal distance that runs the projectile.
![x=(v_{o})_{x}*t\\x=14.09*2.96\\x=41.7[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%2At%5C%5Cx%3D14.09%2A2.96%5C%5Cx%3D41.7%5Bm%5D)