Answer:
Explanation:
Following are a few consequences of fossil fuels
1. It causes air pollution.
2. When they are burned, they produce toxic substances which leads to global warming.
3. Waste products are hazardous to public health and environment.
4. They are non - renewable and unsustainable.
5. Drilling fossil fuels is a dangerous process
Hope this helps
plz mark as brainliest!!!!
Answer : The partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :


So,

where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:

Now we have to determine the partial pressure of
and 

Given:


and,

Given:


Thus, the partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Answer
A. It changes the rate, R
Explanation
When we change the concentration of the reactants in a chemical reaction, it affects the rate of reaction that happens in the process. Typically, the rate of reaction will decrease with time if the concentration of the reactants decreases because the reactants will be converted to products. Similarly, the rate of reaction will increase when the concentration of reactants are increased.
I think c may be your anwser but im not too sure :/ srry if u get it wrong!