Answer:
Option D
160 kHz
Explanation:
Since we must use at least one synchronization bit, total message signal is 15+1=16
The minimum sampling frequency, fs=2fm=2(5)=10 kHz
Bandwith, BW required is given by
BW=Nfs=16(10)=160 kHz
Answer:
a) Δd(change in wood diameter) = 5%
b) The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter
C) new diameter (D2) = 10.5 in
Explanation:
Wood pole diameter = 10 inches
moisture content = 5%
FSP = 30%
A) The percentage change in the wood's diameter
note : moisture fluctuations from 5% to 30% causes dimensional changes in the wood but above 30% up to 55% causes no change. hence this formula can be used to calculate percentage change in the wood's diameter
Δd/d = 1/5(30 - 5)
Δd/d = 5%
Δd = 5%
B) would the wood swell or shrink
The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter
C) The new diameter of the wood
D2 = D + D(
)
D = initial diameter= 10 in , M1 = initial moisture content = 5%
therefore D2 = 10 + 10( 5/100 )
new diameter (D2) = 10.5 in
Answer: (b)
Explanation:
Given
Original length of the rod is 
Strain experienced is 
Strain is the ratio of the change in length to the original length

Therefore, new length is given by (Considering the load is tensile in nature)

Thus, option (b) is correct.
Answer:
The value of Modulus of elasticity E = 85.33 ×

Beam deflection is = 0.15 in
Explanation:
Given data
width = 5 in
Length = 60 in
Mass of the person = 125 lb
Load = 125 × 32 = 4000
We know that moment of inertia is given as


I = 1.40625 
Deflection = 0.15 in
We know that deflection of the beam in this case is given as
Δ = 

E = 85.33 ×

This is the value of Modulus of elasticity.
Beam deflection is = 0.15 in
Answer:
Vector C = 1.334i + 8.671j + 2k or 1.334x + 8.671y + 2z
Explanation:
The concept applied to solve the question is cross product of vector, AXB since vector C is perpendicular to vector A and B and this is solved by applying the 3X3 determinant method.
A detailed step by step explanation is attached below.