Answer:
no
Explanation:
There are an infinite number of fractions. You cannot create all possible fractions with a finite number of bits.
Answer:
Heat generation per unit volume is 45 KW.
Explanation:
Given that
Thickness of wall = 6 cm
Temperature distribution
-----1
K= 15 W/m.k
As we know that at steady state condition
-----2
Where q is the heat generation per unit volume.
So from equation 1


Now from equation 2
So q= 45 KW
So heat generation per unit volume is 45 KW.
Answer:
The energy in kJ is 8558.16 kJ.
Explanation:
Data presented in the problem:
Water is heated from 70 (T1) to 200 °F (T2).
Volume (V) of the water is 1 ft3.
It is required for the specific heat of water(HW), which is 1 BTU/lb°F.
First, we need to calculate the mass of water (M) presented in the process. Water density (D) is 62. 4 lb/ft3.
M = V*D = (1ft3)*(62.4 lb/ft3) = 62.4 lb Water.
.After that, we can calculate the heat required (Q).
Q = M*HW*(T2 - T1) = (62.4 lb)*(1 BTU/lb°F)(200 °F - 70°F)
Q = 62.4 * 130 BTU = 8112 BTU.
Q is converted to kJ units using the conversion factor 1 BTU = 1.055 kJ
Q = 8112 BTU * (1.055 kJ/1BTU) = 8558.16 kJ.
Finally, the energy required is 8558.16 kJ.
Answer:
- #include <iostream>
- using namespace std;
- void printLarger(int a, int b){
-
- if(a > b){
- cout<<a;
- }else{
- cout<<b;
- }
- }
- int main()
- {
- printLarger(4, 5);
- return 0;
- }
Explanation:
The solution code is written in C++.
Firstly define a function printLarger that has two parameters, a and b with both of them are integer type (Line 5). In the function, create an if condition to check if a bigger than b, print a to terminal (Line 7-8). Otherwise print b (Line 9-10).
In the main program, test the function by passing 4 and 5 as arguments (Line 16) and we shall get 5 printed.
Don’t go on that file will give a virus! Sorry just looking out and I don’t know how to comment!